博碩士論文 107324014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.143.218.146
姓名 王振晟(Chen-Cheng Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 脂質體與補體系統之間的相互作用
(INTERACTION BETWEEN LIPOSOME AND COMPLEMENT SYSTEM)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 脂質組成成分對細胞膜物理性質與生物功能的影響★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響
★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響
★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性★ CoCrFeMnNi 高熵合金 形變行為之探討
★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動
★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化★ 發展量測雙層脂質膜的排列密度之實驗技術
★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響★ 開發預測雙子型界面活性劑之自組裝結構的方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-19以後開放)
摘要(中) 脂質體是主要由單層的磷脂質雙層構成的空心球形奈米顆粒,且被廣泛地用作藥物輸送的載體,同時具有靶向輸送的功能。脂質體屬於微粒囊泡,其作為藥物遞送的載體而被廣泛地研究。當脂質體藥物進入人體時,脂質體的磷脂雙層可能會激活所謂的補體系統,從而觸發一系列生化反應,最終導致不良的免疫反應。脂質體所觸發的免疫反應集中在補體激活和相關的生理變異上,從而形成獨特的不良免疫現象,即為與補體激活相關的類過敏(CARPA)。脂質體對補體系統的激活是一個嚴重的醫藥學問題,因為它可以通過釋放有毒蛋白質而引起許多副作用,例如心臟疼痛、皮疹和低血壓、高血壓,這將使新型脂質體藥物的批准或採用變得複雜。然而在補體激活的許多因素中,對表面電荷的研究最為深入;儘管其具有藥學重要性,但是脂質體如何與補體系統的蛋白質相互作用並且激活它,尤其是來自於磷脂質的物理性質之影響仍然未知。這項研究將採用一個模型系統,該系統由補體系統之蛋白質與脂質體組成,以探索脂質體激活補體系統的因素。我們使用表面壓力測量和小角度X射線散射技術來確定脂質彈性性質在脂質體與補體系統之間相互作用的貢獻。通過探索脂質體和補體系統之間的親和力,我們試圖發現磷脂質之彈性性質在補體激活事件中的重要性和關鍵作用。
摘要(英) Liposomes are hollow spherical nanoparticles mainly composed of single layers of phospholipid bilayer and widely used as drug delivery vehicles, sometimes featuring the capability of targeted delivery. Liposomes are microparticulate vesicles which are under extensive study as carriers for improving the delivery of therapeutic drugs. When liposomal drugs enter human bodies, the phospholipid bilayers of the liposomes may activate the so-called complement system, which triggers a cascade of biochemical reactions leading to adverse immune responses. The immune responses of liposomes focus on complement activation and related physiological variation, which build a uniquely adverse immune phenomenon, the complement activation-related pseudoallergy (CARPA). The activation of the complement system by liposomes is a serious pharmaceutical issue, as it can cause many side effects through the release of toxic proteins, such as heart pain, rash and hypo/hypertension, which complicates the approval or adoption of a new liposomal drug. In many factors of complement activation, surface charge is most amply studied. Despite its pharmaceutical importance, how liposomes interact with the protein components of the complement system and activate it, particularly the influences of the physical properties of liposomes (e.g., the bilayer elasticity, which is critical to the lipid-protein interactions) remains largely unknown. This study will employ a model system which consists of the protein domains responsible for the complement system’s interaction with lipid and liposomes of systematically varied compositions, to explore the factors dictating the activation of the complement system by liposomes. The knowledge learned here will be of great value to the designs of liposomal drugs. The current study is to specify the contribution of lipid elastic property to interaction between liposome and complement system by using Langmuir trough and small angle x-ray scattering (SAXS). We choose the part of the complement protein, liposome mediated complement activation binding site, which is the residues 14-26, A-G-R-P-G-R-R-G-R-P-G-L-K, the highly cationic region of the complement system protein. By exploring affinity between liposome and complement system, we aim to find the importance and the role of the elastic properties of liposome in complement activation events.
關鍵字(中) ★ 脂質體
★ 補體系統
★ 小角度X射線散射
★ 單分子槽
關鍵字(英) ★ liposome
★ complement system
★ SAXS
★ Langmuir trough
論文目次 摘要---V
ABSTRACTS---VI
致謝---VIII
TABLE OF CONTENTS---IX
LIST OF FIGURES---X
CHAPTER 1---1
INTRODUCTION---1
1-1 Lipid molecules---1
1-1-1 Elastic propertys of lipid molecules---3
1-2 Drug vectors---7
1-3 Complement activation-related pseudoallergy---10
1-4 Motivation---15
CHAPTER 2---16
MATERIALS AND INSTRUMENTS---16
2-1 Materials---16
2-2 Sample prepararion---22
2-2-1 Vesicle preparation---22
2-2-2 Peptide solution preparation---24
2-3 Instruments---25
2-3-1 Dynamics light scattering---25
2-3-2 Langmuir-Blodgett trough---26
2-3-3 Small angle X-ray scattering---32
CHAPTER 3---36
RESULT---36
3-1 Determination of vesicle particle size---36
3-2 Interaction between lipid monolayer and complement system peptides---40
3-3 Morphology change of vesicle after interacted with complement system peptides---46
CHAPTER 4---55
DISCUSSION---55
CHAPTER 5---58
CONCLUSION---58
REFERENCE---60
APPENDIX---64
參考文獻 Ariöz, Candan. Exploring the Interplay of Lipids and Membrane Proteins. Diss. Department of Biochemistry and Biophysics, Stockholm University, 2014.
Barenholz, Yechezkel Chezy. Doxil®—the first FDA-approved nano-drug: lessons learned. Journal of Controlled Release, 2012, 160.2, 117-134.
Belluati, Andrea, et al. How do the properties of amphiphilic polymer membranes influence the functional insertion of peptide pores? Biomacromolecules, 2019, 21.2, 701-715.
Bradley, Amanda J., et al. C1q binding to liposomes is surface charge dependent and is inhibited by peptides consisting of residues 14–26 of the human C1qA chain in a sequence independent manner. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1999, 1418.1, 19-30.
Bradley, Amanda J., et al. Inhibition of liposome-induced complement activation by incorporated poly (ethylene glycol)-lipids. Archives of Biochemistry and Biophysics, 1998, 357.2, 185-194.
Chen, Ming, et al. Biocompatible anionic polyelectrolyte for improved liposome based gene transfection. International Journal of Pharmaceutics, 2015, 490.1-2, 173-179.
Chen, Te-Jung, et al. Use and manufacturing process for liposomal doxorubicin pharmaceutical composition. U.S. Patent Application 2005, No. 10/957,027.
Chen, Y-F., et al. Differential dependencies on [Ca 2+] and temperature of the monolayer spontaneous curvatures of DOPE, DOPA and cardiolipin: effects of modulating the strength of the inter-headgroup repulsion. Soft Matter, 2015, 11.20, 4041-4053.
Dennison, Sarah R., Frederick Harris, and David A. Phoenix. Langmuir–Blodgett approach to investigate antimicrobial peptide–membrane interactions. Advances in Planar Lipid Bilayers and Liposomes, 2014, 20, 83-110.
67
Frank, Michael M., and Louis F. Fries. The role of complement in inflammation and phagocytosis. Immunology Today, 1991, 12.9, 322-326.
Ghysels, A. Modeling oxygen diffusion through biological lipid membranes using inverse Monte Carlo. Center for Molecular Modeling, https://molmod.ugent.be/subject/modeling-oxygen-diffusion-through-biological-lipid-membranes-using-inverse-monte-carlo (accessed September 5, 2018)
Gregoriadis, Gregory. Targeting of drugs: implications in medicine. The Lancet, 1981, 318.8240, 241-247.
Harroun, Thad A., et al. Neutron and X-ray scattering for biophysics and biotechnology: examples of self-assembled lipid systems. Soft Matter, 2009, 5.14, 2694-2703.
Helfrich, Wolfgang. Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C, 1973, 28.11-12, 693-703.
Hugh, Tony E. Structure and function of the anaphylatoxins. Springer Seminars in Immunopathology. Springer-Verlag, 1984, 7, 2-3.
Hunter, Howard N., et al. The interactions of antimicrobial peptides derived from lysozyme with model membrane systems. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2005, 1668.2, 175-189.
Israelachvili, Jacob N. Intermolecular and surface forces. Academic press, 2011.
Jahn, Reinhard, and Helmut Grubmüller. Membrane fusion. Current opinion in cell biology, 2002 14.4, 488-495.
Janeway Jr, Charles A., et al. The complement system and innate immunity. Immunobiology: The Immune System in Health and Disease. 5th edition. Garland Science, 2001.
Lang, Joseph H., Elliott C. Lasser, and William P. Kolb. Activation of serum complement by contrast media. Investigative Radiology, 1976, 11.4, 303-308.
Lee, Ming-Tao, et al. Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides. Proceedings of the National Academy of
68
Sciences, 2008, 105.13, 5087-5092.
Mohamed, Marwa, et al. PEGylated liposomes: immunological responses. Science and Technology of Advanced Materials, 2019, 20.1, 710-724.
Nepal, Bishal, and Keith J. Stine. Monolayers of Carbohydrate-Containing Lipids at the Water-Air Interface. Cell Culture, 2018, 213-241.
Niidome, T., and L. Huang. Gene therapy progress and prospects: nonviral vectors. Gene Therapy, 2002, 9.24, 1647-1652.
Pabst, Georg, et al. Structural analysis of weakly ordered membrane stacks. Journal of Applied Crystallography, 2003, 36.6, 378-1388.
Pabst, Georg, et al. Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data. Physical Review, 2000, 62.3, 4000.
Pan, Jianjun, and Nawal K. Khadka. Kinetic defects induced by melittin in model lipid membranes: A solution atomic force microscopy study. The Journal of Physical Chemistry B, 2016, 120.20, 4625-4634.
Sackmann, E., R. Kotulla, and Franz-Josef Heiszler. On the role of lipid-bilayer elasticity for the lipid–protein interaction and the indirect protein–protein coupling. Canadian Journal of Biochemistry and Cell Biology, 1984 62.8, 778-788.
Semple, Sean C., Arcadio Chonn, and Pieter R. Cullis. Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo. Advanced Drug Delivery Reviews, 1998, 32.1, 3-17.
Shearman, G. C., et al. Inverse lyotropic phases of lipids and membrane curvature. Journal of Physics: Condensed Matter, 2006, 18.28, S1105.
Su, Chun-Jen, et al. Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013 1828.2, 528-534.
Szebeni, Janos, and Gert Storm. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs.
69
Biochemical and biophysical research communications, 2015, 468.3, 490-497.
Szebeni, Janos, et al. Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Advanced Drug Delivery Reviews, 2011, 63.12, 1020-1030.
Szebeni, Janos. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals. Molecular Immunology, 2014, 61.2, 163-173.
Tsang, Kuan-Yu, et al. Coupling of lipid membrane elasticity and in-plane dynamics. Physical Review, 2017, 96.1, 012410.
Vahabi, Sepideh, and Ali Eatemadi. Nanoliposome encapsulated anesthetics for local anesthesia application. Biomedicine & Pharmacotherapy, 2017, 86, 1-7.
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明