博碩士論文 109622006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.222.240.21
姓名 吳惟馨(Wei-Hsin Wu)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 蛇紋岩斷層帶內的橄欖石與頑火輝石可為地震破裂指標
(Olivine and Enstatite in the Serpentinite-Bearing Fault Zone as a Seismic Indicator)
相關論文
★ 井測資料於臺灣中央山脈北部地熱區之解釋及應用★ 台灣淺灘沉積物組成與物源分析
★ Particle Size Distribution of the Active Fault Zone of Chelungpu Fault and Its Implication for Slipping and Energetics of Large Earthquakes★ 臺灣花蓮和平花崗片麻岩之摩擦特性及其隱示
★ Internal Structure and Permeability of the Creeping Chihshang Fault, Taiwan★ 因應高速飽和水斷層泥變形之壓力閥研製
★ 臺灣金門太武山近期閃電熔岩之礦物、微觀構造及化學特徵★ 南中國海東北部過去三萬八千年以來的古海洋變化
★ 以摩擦試驗探討斷層滑移對於微生物生存的影響★ 臺灣西南部車瓜林斷層之斷層岩石及變形機制
★ The Effect of Fluid Drainage on The Frictional Strength of Water-Saturated Kaolinite During Seismic Slip★ 以熱水力化耦合數值模擬探討快速剪切的斷層泥孔隙水壓與變形機制
★ 俄國西伯利亞古陸奧隆多(Olondo)綠岩帶起源及其地球動力學意義
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 蛇紋岩斷層帶中,橄欖石(與頑火輝石)在前人研究中被視為曾經發生地震的指標。本研究為了解淺部隱沒帶環境中,蛇紋岩脫水作用(dehydroxylation)以及其對斷層強度的影響,我們分別在排水與不排水條件下,對含飽和水的蛇紋岩粉末施加10個百萬帕的正向應力,並以地震滑移速度進行旋剪摩擦試驗。另外,我們同時在距離滑動面約1.5毫米處插入熱電偶來測量實驗中斷層泥的溫度演化。結果顯示,在不排水條件下,斷層泥伴隨著壓縮,其視摩擦係數(apparent friction coefficient)會從峰值(peak)約0.32-0.33降至穩態(steady-state)約0.09-0.12,並在實驗結束時其溫度的最高測量值達到180°C。而在排水條件下,斷層泥伴隨著膨脹與溫度的上升(測量值從350°C上升到450°C),其視摩擦係數也會從一個平坦狀(plateau-like)的峰值約0.37-0.42降至穩態約0.19-0.32。 然後,隨著斷層泥的壓縮與溫度的持續上升(測量值在實驗結束時達到最高溫約為635°C),其視摩擦係數會再上升到約0.29-0.55。綜合偏光顯微鏡、熱場發式掃描式電子顯微鏡、同步輻射X光繞射儀,以及聚焦離子束系統-穿透式電子顯微鏡的分析結果,只有在排水條件的斷層泥主要滑動帶(principal slip zone)裡,才能發現熔融(frictional melt)與蛇紋石的脫水產物。因此,我們推論在不排水條件下,孔隙水的熱增壓作用(thermal pressurization)除了會導致斷層泥的弱化,也會抑制溫度的上升使得蛇紋岩的脫水作用無法發生。而在排水條件下,伴隨著溫度的上升,蛇紋岩脫水作用會促成力-熱-化學增壓作用(mechanical-thermal-chemical pressurization)並導致弱化。隨著水份排出主要滑動帶,形成高黏滯度的熔融並促使斷層泥摩擦係數的再強化(frictional restrengthening)。故本研究的結論認為,蛇紋岩同震的脫水作用只有在排水條件下可以發生,並可以橄欖石與頑火輝石的形態被保存下來,成為我們判斷蛇紋岩斷層帶古地震的指標(paleoseismic indicators)。此外,脫水所導致的熔融,在地震破裂傳遞的過程中可能成為一個摩擦係數上的屏障(frictional barrier),阻止繼續破裂的繼續發生。
摘要(英) Olivine (and enstatite) have been regarded as evidence of paleo-earthquakes within serpentinite shear zones. To investigate the serpentinite dehydroxylation and its influences on the fault strength in shallow subduction zone earthquake-like environments, we performed rotary-shear friction experiments on water-saturated serpentinite powders at a seismic slip rate at 10 MPa normal stress, either in fluid-drained or undrained conditions. Gouge temperature (T) was measured by a thermocouple ~1.5 mm from the slipping surface. Results showed that, in undrained experiments, the apparent friction coefficient dropped from a peak value of ~0.32-0.33 to a steady-state value of ~0.09-0.12, accompanied by gouge compaction and reached a max. T of ~180°C at the thermocouple by the end of the experiment. Drained experiments also displayed a drop from a plateau-like peak value of ~0.37-0.42 to a steady-state value of ~0.19-0.32, associated with gouge dilation and an increase of temperature from ~300°C to ~450°C. The friction coefficient then restrengthened to a value of ~0.29-0.55 with gouge compaction, and recorded a max. T of ~635°C at the thermocouple by the end of the experiment. Integrate microanalytical results from the polarizing microscope, thermal-emission field scanning electron microscope, focused ion beam-transmission electron microscope, and synchrotron X-ray diffraction showed frictional melts and serpentine dehydroxylated products only formed in the principal slip zone (PSZ) of drained experiments. As a result, we suggest that for undrained conditions, thermal pressurization of the pore fluid would lead to frictional weakening and buffered the temperature rise to below that required for serpentine dehydroxylation. However, in drained conditions, with increasing temperature, dehydroxylation of serpentine would first cause mechanical-thermal-chemical pressurization of pore fluid and lead to frictional weakening. As water moves out of the PSZ, frictional recovery would happen by the formation of viscous melts. We conclude that frictional melts (mixed with olivine and enstatite) generated behind rupture fronts, could not only likely become frictional barriers for the ongoing seismic slips but also be preserved as paleoseismic indicators, helping the recognition of paleoseismic events.
關鍵字(中) ★ 橄欖石
★ 頑火輝石
★ 蛇紋岩
★ 脫水作用
★ 旋剪
★ 排水
★ 地震指標
關鍵字(英) ★ Olivine
★ Enstatite
★ Serpentinite
★ Dehydroxylation
★ Rotary-shear
★ Fluid drainage
★ Earthquake indicator
論文目次 ABSTRACT (Chinese)………………………………………………………………………..I
ABSTRACT (English) ……………………………………………………………………….II
ACKNOWLEDGMENTS……………………………………………….……………...…..III
TABLE OF CONTENTS……………………………………………………………………IV
LIST OF FIGURES…………………………………………………………………….…..VII
LIST OF TABLES……………………………………………………………………….….XI
INSTRUCTION OF ABBREVIATIONS………………………………...……………….XII

CHAPTER 1 INTRODUCTION……………………………………………………………01
1.1 Earthquake, subduction zone, and serpentinite………………………………………01
1.2 Rotary shear rock friction experiments……………………………………...…….…01
1.3 Experimental and natural faulting on serpentinite………………………………...…04
1.4 Research motivation…………………………………………………………………10

CHAPTER 2 MATERIALS AND METHODS………………………………...………….11
2.1 Starting material and rock friction experiment…………………………...………….11
2.1.1 Serpentinite powders and sample preparation for gouge sample holder………..11
2.1.2 Rotary shear experiments…………………………...…………………………..14
2.2 Microanalytical methods…………………………...………………………………..16
2.2.1 Petrographic thin sections preparation……...…………………………………..16
2.2.2 Polarizing microscope……………………...……………………………….......18
2.2.3 Thermal-emission field scanning electron microscope (FE-SEM) …………….19
2.2.4 Synchrotron X-ray diffraction..………………………………............................20
2.2.5 High-resolution dual-beam focused ion beam system (FIB) …………............21
2.2.6 Transmission electron microscope (TEM) ..……………………………….....23

CHAPTER 3 RESULTS..……………………………….......................................................24
3.1 Mechanical data……………………………………………………………………...24
3.1.1 Undrained experiments……………………………………………………….24
3.1.2 Drained experiments………………………………………………………….25
3.2 Microanalytical observations………………………………………………………...27
3.2.1 Polarizing microscope………………………………………………………..27
3.2.2 Scanning electron microscope……………………………………………...30
3.2.3 Synchrotron X-ray diffraction………………………………………………..36
3.2.4 Transmission electron microscope…………………………………….……39

CHAPTER 4 DISCUSSIONS……………………………………………………………….42
4.1 Comparison to previous experimental observations…………………………………42
4.2 Dynamic weakening mechanism under undrained condition………………………..45
4.3 Dynamic weakening mechanism under drained condition…………………………..50
4.4 Restrengthening mechanism under drained condition………………………………54
4.5 Implications of the formation of olivine and enstatite in natural serpentinite-bearing fault………………………………………………………………………………...56
4.6 Future works…………………………………………………………………………58

CHAPTER 5 CONCLUSIONS……………………………………………………………..59

REFERENCES………………………………………………………………………………60
APPENDIX…………………………………………………………………………………..65
- ROCK FRICTION EXPERIMENTS AT SLIP VELOCITY OF 1 M/S TO 10-6 M/S
1. Mechanical data for drained condition………………………………………………..65
2. Mechanical data for undrained condition……………………………………………..66
3. Plot for mechanical data at slip velocity of 10-1 to 10-5 m/s in fluid-drained and undrained conditions……………………………………………………………......................67
3.1 Slip velocity of 10-1 m/s………………………………………………………...67
3.2 Slip velocity of 10-2 m/s………………………………………………………..68
3.3 Slip velocity of 10-3 m/s………………………………………………………..69
3.4 Slip velocity of 10-4 m/s………………………………………………………..70
3.5 Slip velocity of 10-5 m/s………………………………………………………..71
4. Velocity-dependent frictional strength of water-saturated serpentinite…………........72
5. Images of the deformed gouge layers…………………………………………………73
6. Microstructural observations…………………………………………………….........74
6.1 Drained condition……………………………………………………………....74
6.2 Undrained condition…………………………………………………………....75
7. Mineralogical composition at the shearing velocity of 10-3 m/s in fluid-drained and undrained conditions…………………………………………………………….............76
7.1 Drained condition…………………………………………………………......76
7.2 Undrained condition...………………………………………………………..78
參考文獻 Acosta, M., Passelègue, F.X., Schubnel, A. et al. Dynamic weakening during earthquakes controlled by fluid thermodynamics. Nat. Commun 9, 3074 (2018). https://doi.org/10.1038/s41467-018-05603-9
Aretusini, S., Meneghini, F., Spagnuolo, E., Harbord, C. W., & Di Toro, G. (2021). Fluid pressurization and earthquake propagation in the Hikurangi subduction zone. Nature communications, 12(1), 1-8.
Brantut, N., Schubnel, A., Corvisier, J., & Sarout, J. (2010). Thermochemical pressurization of faults during coseismic slip. Journal of Geophysical Research: Solid Earth, 115(B5).
Brantut, N.; Schubnel, A.; Rouzaud, J.-N.; Brunet, F.; Shimamoto, T. (2008). High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics. Journal of Geophysical Research, 113(B10), B10401–. doi:10.1029/2007jb005551
Chen, J., Niemeijer, A., Yao, L., & Ma, S. (2017). Water vaporization promotes coseismic fluid pressurization and buffers temperature rise. Geophysical Research Letters, 44(5), 2177-2185.
Chen, Wen-Shan; Chung, Sun-Lin; Chou, Hsien-Yuan; Zugeerbai, Zul; Shao, Wen-Yu; Lee, Yuan-Hsi (2017). A reinterpretation of the metamorphic Yuli belt: Evidence for a middle-late Miocene accretionary prism in eastern Taiwan. Tectonics, 36(2), 188–206. doi:10.1002/2016TC004383
De Paola, N.; Hirose, T.; Mitchell, T.; Di Toro, G.; Viti, C.; Shimamoto, T. (2011). Fault lubrication and earthquake propagation in thermally unstable rocks. Geology, 39(1), 35–38. doi:10.1130/G31398.1
Di Toro, G. Han, R.; Hirose, T.; De Paola,; N. Nielsen, S.; Mizoguchi, K.; Ferri, F.; Cocco, M.; Shimamoto, T. (2011). Fault lubrication during earthquakes. 471(7339), 494–498. doi:10.1038/nature09838
Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., & Shimamoto, T. (2006). Natural and experimental evidence of melt lubrication of faults during earthquakes. science, 311(5761), 647-649.
Di Toro, Giulio; Goldsby, David L.; Tullis, Terry E. (2004). Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. 427(6973), 436–439. doi:10.1038/nature02249
Evans, B. W.; Hattori, K.; Baronnet, A. (2013). Serpentinite: What, Why, Where? Elements, 9(2), 99–106. doi:10.2113/gselements.9.2.99
Faulkner, D. R.; Sanchez-Roa, C.; Boulton, C.; den Hartog, S. A. M. (2018). Pore-fluid Pressure Development in Compacting Fault Gouge in Theory, Experiments, and Nature. Journal of Geophysical Research: Solid Earth. doi:10.1002/2017JB015130
Goldsby, D. L., and T. E. Tullis (2002). Low frictional strength of quartz rocks at subseismic slip rates, Geophys. Res. Lett., 29(17), 1844, doi:10.1029/2002GL015240.
Goldsby, D. L.; Tullis, T. E. (2011). Flash Heating Leads to Low Frictional Strength of Crustal Rocks at Earthquake Slip Rates. Science, 334(6053), 216–218. doi:10.1126/science.1207902
Han, R., Hirose, T., & Shimamoto, T. (2010). Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates. Journal of Geophysical Research: Solid Earth, 115(B3).
Han, R., Shimamoto, T., Hirose, T., Ree, J. H., & Ando, J. I. (2007). Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316(5826), 878-881.
Hannah Ritchie and Max Roser (2014) - "Natural Disasters". Published online at OurWorldInData.org. Retrieved from: ′https://ourworldindata.org/natural-disasters′ [Online Resource]
Hirose, Takehiro and Bystricky, Misha (2007). Extreme dynamic weakening of faults during dehydration by coseismic shear heating. Geophysical Research Letters, 34(14), L14311–. doi:10.1029/2007gl030049
Hirose, Takehiro and Shimamoto, Toshihiko (2005). Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research, 110(B5), B05202–. doi:10.1029/2004jb003207
Hung, C. C., Kuo, L. W., Spagnuolo, E., Wang, C. C., Di Toro, G., Wu, W. J., ... & Hsieh, P. S. (2019). Grain fragmentation and frictional melting during initial experimental deformation and implications for seismic slip at shallow depths. Journal of Geophysical Research: Solid Earth, 124(11), 11150-11169.
Hyndman, R.D., and Peacock, S.M. (2003). Serpentinization of the forearc mantle: Earth and Planetary Science Letters, v. 212, p. 417–432, doi:10.1016/S0012-821X(03)00263-2.
Kawano, S.; Katayama, I.; Okazaki, K. (2011). Permeability anisotropy of serpentinite and fluid pathways in a subduction zone. Geology, 39(10), 939–942. doi:10.1130/G32173.1Kohli, A. H., Goldsby, D. L., Hirth, G. & Tullis, T. (2011). Flash weakening of serpentinite at near-seismic slip rates. J. Geophys. Res. Solid Earth 116, 1–18.
Kuo, L.W., Hung, C.C., Li, H., Aretusini, S., Chen, J., Di Toro, G., Spagnuolo, E., Di Felice, F., Wang, H., Si, J. and Sheu, H.S., Frictional properties of the Longmenshan‐fault‐belt gouges from WFSD‐3 and implications for earthquake rupture propagation. Journal of Geophysical Research: Solid Earth, p.e2022JB024081.
Kuo, L.-W., Wu, W.-J., Kuo, C.-W., Smith, S. A. F., Lin, W.-T., Wu, W.-H., & Huang, Y.-H. (2021). Frictional strength and fluidization of water-saturated kaolinite gouges at seismic slip velocities. Journal of Structural Geology, 150, 104419. doi:10.1016/j.jsg.2021.104419
Lamadrid, Hector M.; Rimstidt, J. Donald; Schwarzenbach, Esther M.; Klein, Frieder; Ulrich, Sarah; Dolocan, Andrei; Bodnar, Robert J. (2017). Effect of water activity on rates of serpentinization of olivine. Nature Communications, 8, 16107–. doi:10.1038/ncomms16107
Lo, C. H., and T. F. Yui (1996). 40Ar/39Ar dating of high-pressure rocks in the Tananao basement complex, Taiwan. J. Geol. Soc. China, 39, 13–30.
Nguyen Thi Trinh (2021). The effect of fluid drainage on the frictional strength of water-saturated kaolinite during seismic slip. Master thesis, National Central University, Taiwan.
Niemeijer, A., G. Di Toro, S. Nielsen, and F. Di Felice (2011). Frictional melting of gabbro under extreme experimental conditions of normal stress, acceleration, and sliding velocity, J. Geophys. Res., 116, B07404, doi:10.1029/2010JB008181.
Proctor, B. P.; Mitchell, T. M.; Hirth, G.; Goldsby, D.; Zorzi, F.; Platt, J. D.; Di Toro, G. (2014). Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates. Journal of Geophysical Research: Solid Earth, 119(11), 8107–8131. doi:10.1002/2014JB011057
Reches, Z. E., & Lockner, D. A. (2010). Fault weakening and earthquake instability by powder lubrication. Nature, 467(7314), 452-455.
Rice, J. R. (1999). Flash heating at asperity contacts and rate-dependent friction. Eos Trans. AGU, 80(46), F471.
Rice, J. R. (2006). Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5).
Rooney, J. S., Tarling, M. S., Smith, S. A. F. & Gordon, K. C. Submicron Raman spectroscopy mapping of serpentinite fault rocks. J. Raman Spectrosc. 49, 279–286 (2018).
Rüpke, L.H., Morgan, J.P., Hort, M., and Connolly, J.A.D. (2004). Serpentine and the subduction zone water cycle: Earth and Planetary Science Letters, v. 223, p. 17–34, doi:10.1016/j.epsl .2004.04.018.
Scholz, C. H. (2002), The Mechanics of Earthquakes and Faulting, Cambridge Univ. Press, Cambridge, U. K.
Shimamoto T, Tsutsumi A (1994). A new rotary-shear high-speed frictional testing machine: its basic design and scope of research. J Tecton Res Group Jpn 39:65–78. (in Japanese with English abstract)
Sibson, R. H. (1975). Generation of pseudotachylyte by ancient seismic faulting. Geophysical Journal International, 43(3), 775-794.
Spray, J. G. (2005). Evidence for melt lubrication during large earthquakes, Geophys. Res. Lett., 32, L07301, doi:10.1029/2004GL022293.
Sulem, J., & Famin, V. (2009). Thermal decomposition of carbonates in fault zones: Slip‐weakening and temperature‐limiting effects. Journal of Geophysical Research: Solid Earth, 114(B3).
Tarling, M.S., Smith, S.A.F., Negrini, M. et al. An evolutionary model and classification scheme for nephrite jade based on veining, fabric development, and the role of dissolution–precipitation. Sci Rep 12, 7823 (2022). https://doi.org/10.1038/s41598-022-11560-7
Tarling, Matthew S.; Smith, Steven A. F.; Viti, Cecilia; Scott, James M. (2018). Dynamic earthquake rupture preserved in a creeping serpentinite shear zone. Nature Communications, 9(1), 3552–. doi:10.1038/s41467-018-05965-0
Terzaghi, K., 1923. Die Berechnung der Durchla ̈ssigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. O ̈ sterreichische Akademie der Wissenschaften in Wien. Mathematisch Naturwissenschaftliche Kl. 132, 125e138.
Tesei, T.; Harbord, C. W. A.; De Paola, N.; Collettini, C.; Viti, C. (2018). Friction of Mineralogically Controlled Serpentinites and Implications for Fault Weakness. Journal of Geophysical Research: Solid Earth. doi:10.1029/2018JB016058
Trinh, Nguyen Thi (2021). The effect of fluid drainage on the frictional strength of water-saturated kaolinite during seismic slip. Master thesis. National Central University (NCU).
Tsutsumi, Akito; Shimamoto, Toshihiko (1997). High-velocity frictional properties of gabbro. Geophysical Research Letters, 24(6), 699–702. doi:10.1029/97gl00503
Violay, M., S. Nielsen, B. Gibert, E. Spagnuolo, A. Cavallo, P. Azais, S. Vinciguerra, and G. Di Toro (2014). Effect of water on the frictional behavior of cohesive rocks during earthquakes, Geology, 42(1), 27–30, doi:10.1130/G34916.1.
Viti, C., & Hirose, T. (2010). Thermal decomposition of serpentine during coseismic faulting: Nanostructures and mineral reactions. Journal of Structural Geology, 32(10), 1476-1484.
Wu, Wei-Hsin, Li-Wei Kuo and Hsiu-Ching Hsiao (2020) Micro-scale deformation evidence in serpentinite (and nephrite) in Yuli belt, eastern Taiwan. Journal of the National Taiwan Museum, 73(2), p.1-12. DOI: 10.6532/JNTM.202006_73(2).02
Yang, Che-Ming; Yu, Wei-Lun; Dong, Jia-Jyun; Kuo, Chih-Yu; Shimamoto, Toshihiko; Lee, Chyi-Tyi; Togo, Tetsuhiro; Miyamoto, Yuki (2014). Initiation, movement, and run-out of the giant Tsaoling landslide — What can we learn from a simple rigid block model and a velocity–displacement dependent friction law? Engineering Geology, 182(), 158–181. doi:10.1016/j.enggeo.2014.08.008
Yen, T. P. (1963). The metamorphic belts within the Tananao Schist terrain of Taiwan. Proc. Geol. Soc. China, 6, 72–74.
指導教授 郭力維(Li-Wei Kuo) 審核日期 2022-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明