博碩士論文 109621012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.139.240.142
姓名 張倢(Chieh Chang)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 西北太平洋海氣熱力環境年代際變化與颱風強度之關係
相關論文
★ 宜蘭地區秋冬季降雨特性之研究★ 台灣地區午後對流降水特性之分析
★ 台灣梅雨季中尺度對流系統之數值模擬研究-TAMEX IOP 8 個案★ 利用整合探空系統分析南海北部大氣邊界層特性之研究
★ 中尺度波譜模式對梅雨期豪雨個案模擬之研究★ 宜蘭地區秋冬季豪大雨特性之研究
★ 台灣東南部地區局部環流與邊界層特性之研究★ 台灣東南部地區複雜地形局部環流的模擬研究
★ 宜蘭地區豪雨個案之研究★ 台灣北部地區雨滴粒徑分佈特性與降雨估計之探討
★ 冬季雹暴個案之分析與模擬★ 伴隨敏督利颱風的強烈西南氣流引發豪大雨之個案探討
★ 利用整合探空系統分析台灣東南部地區大氣邊界層特性之研究★ 桃芝颱風(2001)數值模擬研究:颱風路徑與結構之模擬與分析
★ 利用雨滴譜儀分析不同降水系統之微物理特性研究★ 台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在氣候變遷之下,西北太平洋地區有颱風數量減少,強颱比例增加的趨勢。為了瞭解氣候變遷下海洋與大氣環境的變化是否對颱風強度發展造成影響,本篇研究比較過去二十年 (1980-1999年) 與現在二十年 (2000-2019年), 6至11月的海洋與大氣環境變化,並探討氣候變遷下海洋與大氣環境的變化與颱風強度變化之間的關係。
現今氣候條件下,上層海洋環境與過去相比海表面溫度平均上升0.42℃,海水混合層深度平均加深2.7公尺,海洋熱含量增加了9.89 kJ/〖cm〗^2。結果顯示氣候變遷下,上層海洋的熱力環境將更有利於颱風強度發展。而在大氣環境方面,與過去相比,太平洋副熱帶高壓增強且向西延伸,季風槽也有西退的趨勢,垂直風切平均增加0.07 m/s,低層大氣平均比濕平均增加0.09 g/kg。結果顯示氣候變遷下,大氣環境的變化對強度發展有正貢獻也有負貢獻,太平洋副高、季風槽與垂直風切的變化將不利於颱風的生成。
分別使用觀測之颱風最大風速與環境估計之颱風潛勢強度進行分析,比較海洋及大氣環境與颱風強度的關係,結果顯示與大氣環境相比,海洋環境的變化與颱風強度變化有較直接的關係,海洋環境的變化與環境之颱風強度變化也更有關聯。其中,海洋熱含量與颱風強度的關係較海表面溫度高,並與強度較強的颱風有更高的相關性。
摘要(英) Under climate change, the number of typhoons in the Northwest Pacific region will decrease and the proportion of strong typhoons will increase. In order to understand whether changes in the ocean and atmospheric environment under climate change affect the development of typhoon intensity. This study compares the changes in the ocean and atmospheric environment from June to November in the past two decades (1980-1999) and the current twenty years (2000-2019), and discusses the relationship between changes in the ocean and atmospheric environment and the typhoon intensity.
Compared with the past, the sea surface temperature has increased by an average of 0.42°C, the depth of the ocean mixed layer has deepened by an average of 2.7 meters, and the ocean heat content (OHC) has increased by 9.89 kJ/cm2. The results show that under climate change, the thermal environment of the upper ocean will be more conducive to the development of typhoon intensity. In terms of atmospheric environment, the Pacific subtropical high strengthened and extended westward, and the monsoon trough also tended to retreat westward compared with the past. The average vertical wind shear increased by 0.07 m/s, and the average specific humidity in the lower atmosphere increased by 0.09 g/kg. Under climate change, atmospheric environment has both positive and negative contributions to the development of typhoon intensity, and changes in the Pacific subtropical high, monsoon trough, and vertical wind shear will be unfavorable for the formation of typhoons.
Using the observed maximum wind speed of typhoon and potential intensity to analyze the relationship between ocean and atmospheric environment and typhoon intensity. The results show that compared with the atmospheric environment, the ocean environment has a more direct relationship with typhoon intensity. Changes in the ocean environment are more related to changes in typhoon intensity. Compared with sea surface temperature, OHC has a higher relationship with typhoon intensity. Moreover, the correlation between OHC and stronger typhoon is even more higher than that of week typhoon. In conclusion, among all variables, OHC has highest correlation with typhoon intensity.
關鍵字(中) ★ 颱風
★ 氣候變遷
★ 海洋熱含量
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 vii
第一章 緒論 1
1-1 前言與文獻回顧 1
1-2 研究動機 2
第二章 資料來源與研究方法 4
2-1 資料來源 4
2-1-1 JTWC Best Track Data 4
2-1-2 ERA5 4
2-1-3 NCEP GODAS 4
2-2 研究方法 5
2-2-1 研究之時間與空間範圍 5
2-2-2 颱風強度分級 5
2-2-3 颱風潛勢強度 6
2-2-4 海洋熱含量 7
第三章 氣候變遷下颱風數量與強度之變化 8
3-1 颱風數量 8
3-1-1 不同月份之颱風個案數量統計 8
3-1-2 不同強度之颱風個案數量統計 8
3-2 颱風路徑分布頻率 10
第四章 氣候變遷下大尺度海洋與大氣環境之變化 11
4-1 海洋環境變化 11
4-1-1 海表面溫度 11
4-1-2 海洋混合層深度 12
4-1-3 海洋熱含量 13
4-2 大氣環境變化 14
4-2-1 太平洋副熱帶高壓與季風槽 14
4-2-2 垂直風切 16
4-2-3 低層水氣 17
第五章 海洋及大氣環境的改變與颱風強度之關係 19
5-1 颱風潛勢強度與環境變化的關係 19
5-1-1 颱風潛勢強度在氣候變遷下的變化 19
5-1-2 颱風潛勢強度與垂直風切變化 20
5-1-3 颱風潛勢強度與低層水氣變化 21
5-1-4 颱風潛勢強度與海表面溫度變化 22
5-1-5 颱風潛勢強度與海洋熱含量變化 23
5-2 颱風潛勢強度與颱風強度的關係 24
5-3 颱風強度與環境變化之關係 25
5-3-1 颱風強度與大氣環境的關係 25
5-3-2 颱風強度與海洋環境的關係 26
第六章 結論與未來展望 28
6-1 結論 28
6-2 未來展望 30
參考文獻 31
附表 34
附圖 36
參考文獻 張承泰 (民108)。以WRF動力降尺度資料探討台北地區未來午後熱對流變化。國立中央大學大氣物理研究所碩士論文。
陳昀靖 (民104)。西北太平洋地區颱風活動隨全球暖化的改變。國立中央大學大氣物理研究所碩士論文。
蕭立朋、余嘉裕 (民106)。適合西北太平洋海域之颱風生成潛在指數。大氣科學,45,221-237。
Bister, M., & Emanuel, K. A. (1998). Dissipative heating and hurricane intensity. Meteorology and Atmospheric Physics, 65, 233-240.
Bister, M., & Emanuel, K. A. (2002). Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. Journal of Geophysical Research: Atmospheres, 107(D24). https://doi.org/10.1029/2001jd000776
Chan, J. C. L., & Liu, K. S. (2004). Global Warming and Western North Pacific Typhoon Activity from an Observational Perspective. Journal of Climate, 17, 4590-4602.
Emanuel, K. A. (1987). The dependence of hurricane intensity on climate. Nature, 326, 483-485.
Emanuel, K. A. (1988). The Maximum Intensity of Hurricanes. Journal of the Atmospheric Sciences, 45(7), 1143–1155. https://doi.org/https://doi.org/10.1175/3240.1
Emanuel, K. A. (1995). Sensitivity of tropical cyclons to surface exchange coffivients and a revised steady-state model incorporatind eye dynamics. Journal of Atmospheric Sciences, 52(22), 3969-3976.
Jacob, S. D., & Shay, L. K. (2003). The Role of Oceanic Mesoscale Features on the Tropical Cyclone–Induced Mixed Layer Response: A Case Study. Journal of Physical Oceanography, 33, 649-676.
Leipper, D. F., & Volgenau, D. (1972). Hurricane Heat Potential of the Gulf of Mexico. Journal of Physical Oceanography, 2(3), 218-224. https://doi.org/https://doi.org/10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2
Lin, I.-I., Wu, C.-C., Emanuel, K. A., Lee, I.-H., Wu, C.-R., & Pun, I.-F. (2005). The Interaction of Supertyphoon Maemi (2003) with a Warm Ocean Eddy. Monthly Weather Review, 133(9), 2635–2649. https://doi.org/https://doi.org/10.1175/MWR3005.1
Lin, I. I., Black, P., Price, J. F., Yang, C. Y., Chen, S. S., Lien, C. C., Harr, P., Chi, N. H., Wu, C. C., & D′Asaro, E. A. (2013). An ocean coupling potential intensity index for tropical cyclones. Geophysical Research Letters, 40(9), 1878-1882. https://doi.org/10.1002/grl.50091
Lin, I. I., Wu, C.-C., Pun, I.-F., & Ko, D.-S. (2008). Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons’ Intensification. Monthly Weather Review, 136(9), 3288-3306. https://doi.org/10.1175/2008mwr2277.1
Pun, I.-F., Lin, I. I., Wu, C.-R., Ko, D.-S., & Liu, W. T. (2007). Validation and Application of Altimetry-Derived Upper Ocean Thermal Structure in the Western North Pacific Ocean for Typhoon-Intensity Forecast. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1616-1630. https://doi.org/10.1109/tgrs.2007.895950
Pun, I.-F., Wu, C.-C., Lin, I. I., & Ko, D.-S. (2008). Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons’ Intensification. Monthly Weather Review, 136(9), 3288-3306. https://doi.org/10.1175/2008mwr2277.1
Pun, I., Chang, Y.-T., Lin, I. I., Tang, T. Y., & Lien, R.-C. (2011). Typhoon-Ocean Interaction in the Western North Pacific: Part 2. Oceanography, 24(4), 32-41. https://doi.org/10.5670/oceanog.2011.92
Tsou, C.-H., Huang, P.-Y., Tu, C.-Y., Chen, C.-T., Tzeng, T.-P., & Cheng, C.-T. (2016). Present Simulation and Future Typhoon Activity Projection over Western North Pacific and Taiwan/East Coast of China in 20-km HiRAM Climate Model. Terrestrial, Atmospheric and Oceanic Sciences, 27(5), 687-703. https://doi.org/10.3319/tao.2016.06.13.04
Wada, A. (2015). Utilization of tropical cyclone heat potential for improving tropical cyclone intensity forecasts. Technical review, 17.
Wang, C. C., Tseng, L. S., Huang, C. C., Lo, S. H., Chen, C. T., Chuang, P. Y., Su, N. C., & Tsuboki, K. (2019). How much of Typhoon Morakot′s extreme rainfall is attributable to anthropogenic climate change? International Journal of Climatology, 39(8), 3454-3464. https://doi.org/10.1002/joc.6030
Wu, L., Wang, R., & Feng, X. (2018). Dominant Role of the Ocean Mixed Layer Depth in the Increased Proportion of Intense Typhoons During 1980–2015. Earth′s Future, 6(11), 1518-1527. https://doi.org/10.1029/2018ef000973
Zhao, X., & Chan, J. C. L. (2017). Changes in tropical cyclone intensity with translation speed and mixed-layer depth: idealized WRF-ROMS coupled model simulations. Quarterly Journal of the Royal Meteorological Society, 143(702), 152-163. https://doi.org/10.1002/qj.2905
指導教授 林沛練(Pay-Liam Lin) 審核日期 2023-2-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明