博碩士論文 107324052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.145.152.98
姓名 鄭凱文(Kai-Wen Cheng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 電極材料對薄膜碲化鉍熱電模組性質之影響
(Effect of Electrode Materials on Thermoelectric Property for Bi2Te3 Thin Film Thermoelectric Module)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-31以後開放)
摘要(中) 近年來,隨著環保的意識抬頭與減少碳排放量的共識,綠色能源的發展正如火如荼的進行中。其中,熱電裝置作為一種環境友善的熱能與電能轉換技術,沒有任何移動部件,能在安靜且穩定的特性下將廢熱轉換為電能。在薄膜熱電模組中,熱電材料時常因兩端電極的擴散而大幅影響模組本身的性能,在實際應用下模組更會進行長時間的熱時效處理,其造成的擴散行為對於整體模組的影響更為重大。本研究以共濺鍍之高結晶取向Bi2Te3材料作為熱電薄膜,並以電導率較高之Cu和Ni作為金屬電極,探討Cu/Bi2Te3/Cu和Ni/Bi2Te3/Ni模組在長時間熱時效處理下,不同電極的擴散行為以及其界面穩定性,在Cu/Bi2Te3/Cu模組中,Cu原子藉由表面及晶界的擴散遷移至Bi2Te3薄膜中,擴散後的Cu原子在Bi2Te3薄膜的晶界中析出,並在Bi2Te3薄膜的表面上生成Cu2−xTe介金屬化合物 (IMC),其接觸電阻隨著熱時效處理的時間增加而大幅上升。然而,在Ni/Bi2Te3/Ni模組中,雖然Ni原子僅擴散進Bi2Te3薄膜約50奈米處,並無任何IMC生成在界面處,但Ni原子的擴散仍使接觸電阻有著明顯的上升。在長時間熱時效處理下,使得原始的Bi2Te3薄膜與Ni/Bi2Te3/Ni模組中生成Bi_Te^·反位缺陷,其部分熱電薄膜由原本的n-型Bi2Te3轉變為p-型Bi2Te3,進而使其整體功率因子降低。綜合Cu/Bi2Te3/Cu和Ni/Bi2Te3/Ni模組的擴散行為以及熱電性質,Cu/Bi2Te3/Cu模組顯示Cu原子的擴散顯著地減緩Bi2Te3薄膜的功率因子在長時間熱時效處理下的衰退。
摘要(英) With the increase in environmental awareness and the consensus to reduce carbon emissions, the development of effective energy harvester is an inevitable trend. A thermoelectric device, as an eco-friendly and solid-state energy converter, is silent and reliable because it has no moving parts, and can directly convert waste heat into electric energy. For thin film thermoelectric modules with electrodes deposited on the sides of the thermoelectric material, the diffusion of atoms from the electrode affects the module’s performance. Long-term aging is crucial when the module is for practical applications. In this study, Bi2Te3 thin films with a highly preferred orientation were fabricated by co-sputtering deposition method. Cu and Ni were used as the electrodes because of their high electrical conductivity. The diffusion behavior and interfacial stability of the Cu/Bi2Te3/Cu and Ni/Bi2Te3/Ni samples were investigated by long-term aging. Cu migrates through the Bi2Te3 film via surface and grain boundary diffusion. The diffusing Cu segregates at grain boundaries and forms a Cu2−xTe intermetallic compound on the sample surface. Contact resistivity at the interface between the Cu electrode and Bi2Te3 thin films substantially increases with aging time. However, although Ni only diffuses into the Bi2Te3 layer by approximately 50 nm, the penetration of Ni still deteriorates the contact resistance of thin film thermoelectric modules. Long-term aging unavoidably degrades the power factor (PF) of the pristine Bi2Te3 and Ni/Bi2Te3/Ni samples since n-type Bi2Te3 converts into p-type by the formation of Bi_Te^· antisite defects. The study shows that the diffusing Cu from the electrodes of the Cu/Bi2Te3/Cu module significantly mitigate the degradation of the PF after long-term aging.
關鍵字(中) ★ 碲化鉍
★ 薄膜模組
★ 擴散行為
★ 反位缺陷
★ 熱電性質
關鍵字(英) ★ Bi2Te3
★ Thin film module
★ Diffusion behavior
★ Antisite defect
★ Thermoelectric property
論文目次 摘要 i
Abstract ii
致謝辭 iii
Table of Contents v
List of Figures vii
List of Tables x
CHAPTER 1 Introduction 1
1-1 Background 1
1-2 Thermoelectric Material 5
1-2-1 Fundamental Theory and Thermoelectric Property 5
1-2-2 Bulk and Thin Film Thermoelectric Module 8
1-2-3 Applications of Thermoelectric Device 10
1-3 Bi2Te3-based Thermoelectric Material 13
1-3-1 Deposition Method 14
1-3-2 Annealing Treatment 16
1-3-3 Doping Method 17
1-4 Interfacial Stability for Bi2Te3-Based Thermoelectric Material 19
1-5 Evaluation of Thin Film Thermoelectric Module 22
CHAPTER 2 Motivation 24
CHAPTER 3 Experimental Procedure 25
3-1 Sample Preparation 25
3-1-1 Fabrication of Bi2Te3 Thin Film 25
3-1-2 Fabrication of Metal Electrodes 27
3-2 Diffusion Behavior 28
3-3 Interfacial Stability 29
3-4 Contact Resistivity 30
3-5 Thermoelectric Properties 32
3-5-1 ZEM-3 Measurement 32
CHAPTER 4 Results and Discussion 33
4-1 Characterization of Bi2Te3 Thin Films 33
4-2 Diffusion Behavior 37
4-2-1 Diffusion Behavior of Cu in Bi2Te3 Thin Films 37
4-2-2 Diffusion Behavior of Ni in Bi2Te3 Thin Films 49
4-3 Interfacial Stability 52
4-3-1 Interfacial Stability of Cu/Bi2Te3/Cu Samples 52
4-3-2 Interfacial Stability of Ni/Bi2Te3/Ni Samples 55
4-4 Contact Resistivity 58
4-5 Thermoelectric Properties 60
4-5-1 Thermoelectric Properties of Bi2Te3 Thin Films 60
4-5-2 Thermoelectric Properties of Cu/Bi2Te3/Cu Samples 64
4-5-3 Thermoelectric Properties of Ni/Bi2Te3/Ni Samples 66
Chapter 5 Conclusion 69
Reference 71
參考文獻 [1] Enerdata, World Energy & Climate Statistics - Yearbook 2022, 2022. Available: https://yearbook.enerdata.net/total-energy/world-consumption-statistics.html
[2] H.R.a.M. Roser, "Energy Production and Consumption", 2022.
[3] REN21, Renewables 2021 Global Status Report, 2021. Available: https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf
[4] S. Kim, H. Lee, N. Kim et al., "A thin film thermoelectric cooler for Chip-on-Board assembly", ieice electronics express, Vol, 7, pp. 1615-1621, 2010.
[5] W. Zhu, Y. Deng, M. Gao et al., "Hierarchical Bi–Te based flexible thin-film solar thermoelectric generator with light sensing feature", Energy Conversion and Management, Vol, 106, pp. 1192-1200, 2015.
[6] S. Saini, P. Mele, K. Miyazaki et al., "On-chip thermoelectric module comprised of oxide thin film legs", Energy Conversion and Management, Vol, 114, pp. 251-257, 2016.
[7] Y. Su, J. Lu, D. Villaroman et al., "Free-standing planar thermoelectric microrefrigerators based on nano-grained SiGe thin films for on-chip refrigeration", Nano Energy, Vol, 48, pp. 202-210, 2018.
[8] A. Nozariasbmarz, R.A. Kishore, B. Poudel et al., "High power density body heat energy harvesting", ACS applied materials & interfaces, Vol, 11, pp. 40107-40113, 2019.
[9] X.-L. Shi, J. Zou, and Z.-G. Chen, "Advanced thermoelectric design: from materials and structures to devices", Chemical Reviews, Vol, 120, pp. 7399-7515, 2020.
[10] M. Li, M. Hong, M. Dargusch et al., "High-efficiency thermocells driven by thermo-electrochemical processes", Trends in Chemistry, Vol, 3, pp. 561-574, 2021.
[11] D. Champier, "Thermoelectric generators: A review of applications", Energy Conversion and Management, Vol, 140, pp. 167-181, 2017.
[12] N. Jaziri, A. Boughamoura, J. Muller et al., "A comprehensive review of Thermoelectric Generators: Technologies and common applications", Energy Reports, Vol, 6, pp. 264-287, 2020.
[13] M.A. Zoui, S. Bentouba, J.G. Stocholm et al., "A Review on Thermoelectric Generators: Progress and Applications", Energies, Vol, 13, 2020.
[14] B.J. Huang, C.J. Chin, and C.L. Duang, "A design method of thermoelectric cooler", International Journal of Refrigeration-Revue Internationale Du Froid, Vol, 23, pp. 208-218, 2000.
[15] R.G. Yang, G. Chen, A.R. Kumar et al., "Transient cooling of thermoelectric coolers and its applications for microdevices", Energy Conversion and Management, Vol, 46, pp. 1407-1421, 2005.
[16] I. Chowdhury, R. Prasher, K. Lofgreen et al., "On-chip cooling by superlattice-based thin-film thermoelectrics", Nat. Nanotechnol., Vol, 4, pp. 235-238, 2009.
[17] D. Enescu, "Thermoelectric energy harvesting: basic principles and applications", Green energy advances, p. 1, 2019.
[18] C. Kim, S. Park, J. Yoon et al., "Effect of Thermoelectric Leg Thickness in a Planar Thin Film TEC Device on Different Substrates", Electronic Materials Letters, Vol, 15, pp. 686-692, 2019.
[19] S.M. Pourkiaei, M.H. Ahmadi, M. Sadeghzadeh et al., "Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials", Energy, Vol, 186, 2019.
[20] H. Liu, H. Fu, L. Sun et al., "Hybrid energy harvesting technology: From materials, structural design, system integration to applications", Renewable and sustainable energy reviews, Vol, 137, p. 110473, 2021.
[21] S. Corbett, D. Gautam, S. Lal et al., "Electrodeposited Thin-Film Micro-Thermoelectric Coolers with Extreme Heat Flux Handling and Microsecond Time Response", Acs Applied Materials & Interfaces, Vol, 13, pp. 1773-1782, 2021.
[22] S.D. Xu, X.L. Shi, M. Dargusch et al., "Conducting polymer-based flexible thermoelectric materials and devices: From mechanisms to applications", Progress in Materials Science, Vol, 121, 2021.
[23] W.Y. Chen, X.L. Shi, J. Zou et al., "Thermoelectric Coolers: Progress, Challenges, and Opportunities", Small Methods, Vol, 6, 2022.
[24] T. Kajikawa, "Thermoelectric application for power generation in Japan", Advances in Science and Technology, Vol, 74, pp. 83-92, 2011.
[25] H.-B. Lee, H.J. Yang, J.H. We et al., "Thin-film thermoelectric module for power generator applications using a screen-printing method", Journal of electronic materials, Vol, 40, pp. 615-619, 2011.
[26] T. Sun, J.L. Peavey, M.D. Shelby et al., "Heat shrink formation of a corrugated thin film thermoelectric generator", Energy Conversion and Management, Vol, 103, pp. 674-680, 2015.
[27] S.H. Lee, H. Shen, and S. Han, "Flexible thermoelectric module using Bi-Te and Sb-Te thin films for temperature sensors", Journal of Electronic Materials, Vol, 48, pp. 5464-5470, 2019.
[28] P.-S. Lin, S. Inagaki, J.-H. Liu et al., "The Role of Branched Alkylthio Side Chain on Dispersion and Thermoelectric Properties of Regioregular Polythiophene/Carbon Nanotubes Nanocomposites", Chemical Engineering Journal, p. 141366, 2023.
[29] A. Sanchez-Torres, "Radioisotope power systems for space applications", Radioisotopes Application in Physical Sciences, Vol, 1, pp. 457-471, 2011.
[30] A. Sakai, T. Kanno, K. Takahashi et al., "Power generation and peltier refrigeration by a tubular π-type thermoelectric module", Journal of Electronic Materials, Vol, 44, pp. 4510-4515, 2015.
[31] D. Ji, H. Cai, Z. Ye et al., "Comparison between thermoelectric generator and organic Rankine cycle for low to medium temperature heat source: A Techno-economic analysis", Sustainable Energy Technologies and Assessments, Vol, 55, p. 102914, 2023.
[32] V. Karthikeyan, J.U. Surjadi, J.C. Wong et al., "Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting", Journal of Power Sources, Vol, 455, p. 227983, 2020.
[33] D. Enescu and E.O. Virjoghe, "A review on thermoelectric cooling parameters and performance", Renewable and Sustainable Energy Reviews, Vol, 38, pp. 903-916, 2014.
[34] W.-Y. Chen, X.-L. Shi, J. Zou et al., "Thermoelectric coolers for on-chip thermal management: Materials, design, and optimization", Materials Science and Engineering: R: Reports, Vol, 151, p. 100700, 2022.
[35] Y.-C. Soong, J.-W. Li, Y.-F. Chen et al., "Polymer-assisted dispersion of boron nitride/graphene in a thermoplastic polyurethane hybrid for cooled smart clothes", ACS omega, Vol, 6, pp. 28779-28787, 2021.
[36] B. Hu, X.-L. Shi, J. Zou et al., "Thermoelectrics for medical applications: Progress, challenges, and perspectives", Chemical engineering journal, p. 135268, 2022.
[37] L. Liu, Y. Sun, W. Li et al., "Flexible unipolar thermoelectric devices based on patterned poly [K x (Ni-ethylenetetrathiolate)] thin films", Materials Chemistry Frontiers, Vol, 1, pp. 2111-2116, 2017.
[38] C.-W. Chen and C.-N. Liao, "Enhanced thermoelectric properties of screen-printed Bi–Sb–Te films on flexible substrate by electrical sintering process", Materials Chemistry and Physics, Vol, 259, p. 124006, 2021.
[39] G.J. Snyder and E.S. Toberer, "Complex thermoelectric materials", Nature materials, Vol, 7, pp. 105-114, 2008.
[40] A.D. LaLonde, Y. Pei, H. Wang et al., "Lead telluride alloy thermoelectrics", Materials today, Vol, 14, pp. 526-532, 2011.
[41] H. Fang, Z. Luo, H. Yang et al., "The effects of the size and the doping concentration on the power factor of n-type lead telluride nanocrystals for thermoelectric energy conversion", Nano letters, Vol, 14, pp. 1153-1157, 2014.
[42] T. Dankwort, A.L. Hansen, M. Winkler et al., "Nanostructure, thermoelectric properties, and transport theory of V2VI3 and V2VI3/IV–VI based superlattices and nanomaterials", physica status solidi (a), Vol, 213, pp. 662-671, 2016.
[43] M. Goto, M. Sasaki, Y. Xu et al., "Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology", Applied Surface Science, Vol, 407, pp. 405-411, 2017.
[44] J. Qiao, Y. Zhao, Q. Jin et al., "Tailoring nanoporous structures in Bi2Te3 thin films for improved thermoelectric performance", ACS applied materials & interfaces, Vol, 11, pp. 38075-38083, 2019.
[45] D. Song, W. Liu, T. Zeng et al., "Thermal conductivity of skutterudite thin films and superlattices", Applied Physics Letters, Vol, 77, pp. 3854-3856, 2000.
[46] D.-H. Kim, E. Byon, G.-H. Lee et al., "Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering", Thin Solid Films, Vol, 510, pp. 148-153, 2006.
[47] Z. Zeng, P. Yang, and Z. Hu, "Temperature and size effects on electrical properties and thermoelectric power of Bismuth Telluride thin films deposited by co-sputtering", Applied Surface Science, Vol, 268, pp. 472-476, 2013.
[48] P.H. Le, C.-N. Liao, C.W. Luo et al., "Thermoelectric properties of nanostructured bismuth–telluride thin films grown using pulsed laser deposition", Journal of alloys and compounds, Vol, 615, pp. 546-552, 2014.
[49] S.-J. Joo, B.S. Kim, B.-K. Min et al., "Deposition of n-type Bi2Te3 thin films on polyimide by using RF magnetron co-sputtering method", Journal of Nanoscience and Nanotechnology, Vol, 15, pp. 8299-8304, 2015.
[50] M. Daniel, M. Lindorf, and M. Albrecht, "Thermoelectric properties of skutterudite CoSb3 thin films", Journal of Applied Physics, Vol, 120, p. 125306, 2016.
[51] P. Nuthongkum, R. Sakdanuphab, M. Horprathum et al., "[Bi]:[Te] Control, Structural and Thermoelectric Properties of Flexible Bi x Te y Thin Films Prepared by RF Magnetron Sputtering at Different Sputtering Pressures", Journal of Electronic Materials, Vol, 46, pp. 6444-6450, 2017.
[52] D.-D. Yang, H. Tong, L.-J. Zhou et al., "Effects of thickness and temperature on thermoelectric properties of Bi2Te3-based thin films", Chinese Physics Letters, Vol, 34, p. 127301, 2017.
[53] C.W. Lee, G.H. Kim, J.W. Choi et al., "Improvement of thermoelectric properties of Bi2Te3 and Sb2Te3 films grown on graphene substrate", physica status solidi (RRL)–Rapid Research Letters, Vol, 11, p. 1700029, 2017.
[54] P.-Y. Chuang, S.-H. Su, C.-W. Chong et al., "Anti-site defect effect on the electronic structure of a Bi 2 Te 3 topological insulator", RSC advances, Vol, 8, pp. 423-428, 2018.
[55] H.-J. Wu and W.-T. Yen, "High thermoelectric performance in Cu-doped Bi2Te3 with carrier-type transition", Acta Materialia, Vol, 157, pp. 33-41, 2018.
[56] Y.-J. Wu, S.-C. Hsu, Y.-C. Lin et al., "Study on thermoelectric property optimization of mixed-phase bismuth telluride thin films deposited by co-evaporation process", Surface and Coatings Technology, Vol, 394, p. 125694, 2020.
[57] K.B. Masood, P. Kumar, R. Singh et al., "Odyssey of thermoelectric materials: foundation of the complex structure", Journal of Physics Communications, Vol, 2, p. 062001, 2018.
[58] S.J. Kim, J.H. We, and B.J. Cho, "A wearable thermoelectric generator fabricated on a glass fabric", Energy & Environmental Science, Vol, 7, pp. 1959-1965, 2014.
[59] D. Lee, C. Lim, D. Cho et al., "Effects of annealing on the thermoelectric and microstructural properties of deformed n-type Bi 2 Te 3-based compounds", Journal of electronic materials, Vol, 35, pp. 360-365, 2006.
[60] S. Li, H.M. Soliman, J. Zhou et al., "Effects of annealing and doping on nanostructured bismuth telluride thick films", Chemistry of Materials, Vol, 20, pp. 4403-4410, 2008.
[61] A. Taylor, C. Mortensen, R. Rostek et al., "Vapor annealing as a post-processing technique to control carrier concentrations of Bi 2 Te 3 thin films", Journal of electronic materials, Vol, 39, pp. 1981-1986, 2010.
[62] S.-j. Jeon, M. Oh, H. Jeon et al., "Effects of post-annealing on thermoelectric properties of bismuth–tellurium thin films deposited by co-sputtering", Microelectronic engineering, Vol, 88, pp. 541-544, 2011.
[63] S.-R. Jian, P.H. Le, C.-W. Luo et al., "Nanomechanical and wettability properties of Bi2Te3 thin films: Effects of post-annealing", Journal of Applied Physics, Vol, 121, p. 175302, 2017.
[64] J.-M. Lin, Y.-C. Chen, and C.-P. Lin, "Annealing effect on the thermoelectric properties of Bi2Te3 thin films prepared by thermal evaporation method", Journal of nanomaterials, Vol, 2013, pp. 1-1, 2013.
[65] X. Wang, H. He, N. Wang et al., "Effects of annealing temperature on thermoelectric properties of Bi2Te3 films prepared by co-sputtering", Applied Surface Science, Vol, 276, pp. 539-542, 2013.
[66] L. Hu, H. Wu, T. Zhu et al., "Tuning multiscale microstructures to enhance thermoelectric performance of n‐type Bismuth‐Telluride‐based solid solutions", Advanced Energy Materials, Vol, 5, p. 1500411, 2015.
[67] M.-K. Han, K. Ahn, H. Kim et al., "Formation of Cu nanoparticles in layered Bi 2 Te 3 and their effect on ZT enhancement", Journal of Materials Chemistry, Vol, 21, pp. 11365-11370, 2011.
[68] W.S. Liu, Q. Zhang, Y. Lan et al., "Thermoelectric property studies on Cu‐doped n‐type CuxBi2Te2. 7Se0. 3 nanocomposites", Advanced Energy Materials, Vol, 1, pp. 577-587, 2011.
[69] F. Hao, P. Qiu, Y. Tang et al., "High efficiency Bi 2 Te 3-based materials and devices for thermoelectric power generation between 100 and 300 C", Energy & Environmental Science, Vol, 9, pp. 3120-3127, 2016.
[70] F. Sie, C. Kuo, C.-S. Hwang et al., "Thermoelectric performance of n-Type Bi 2 Te 3/Cu composites fabricated by nanoparticle decoration and spark plasma sintering", Journal of Electronic Materials, Vol, 45, pp. 1927-1934, 2016.
[71] H.-S. Kim, K.H. Lee, J. Yoo et al., "Suppression of bipolar conduction via bandgap engineering for enhanced thermoelectric performance of p-type Bi0. 4Sb1. 6Te3 alloys", Journal of Alloys and Compounds, Vol, 741, pp. 869-874, 2018.
[72] K. Kim, G. Kim, S.I. Kim et al., "Clarification of electronic and thermal transport properties of Pb-, Ag-, and Cu-doped p-type Bi0. 52Sb1. 48Te3", Journal of Alloys and Compounds, Vol, 772, pp. 593-602, 2019.
[73] J. Cha, C. Zhou, S.-P. Cho et al., "Ultrahigh power factor and electron mobility in n-type Bi2Te3–x% Cu stabilized under excess Te condition", ACS applied materials & interfaces, Vol, 11, pp. 30999-31008, 2019.
[74] R. Carlson, "Anisotropic diffusion of copper into bismuth telluride", Journal of Physics and Chemistry of Solids, Vol, 13, pp. 65-70, 1960.
[75] S. Diliberto, V. Richoux, N. Stein et al., "Influence of pulsed electrodeposition on stoichiometry and thermoelectric properties of bismuth telluride films", physica status solidi (a), Vol, 205, pp. 2340-2344, 2008.
[76] W.-C. Lin, Y.-S. Li, and A.T. Wu, "Study of diffusion barrier for solder/n-type Bi 2 Te 3 and bonding strength for p-and n-type thermoelectric modules", Journal of Electronic Materials, Vol, 47, pp. 148-154, 2018.
[77] C.-H. Wang, H.-C. Hsieh, Z.-W. Sun et al., "Interfacial stability in Bi2Te3 thermoelectric joints", ACS Applied Materials & Interfaces, Vol, 12, pp. 27001-27009, 2020.
[78] H.-C. Hsieh, C.-H. Wang, T.-W. Lan et al., "Joint properties enhancement for PbTe thermoelectric materials by addition of diffusion barrier", Materials Chemistry and Physics, Vol, 246, p. 122848, 2020.
[79] Y. He, T. Zhang, X. Shi et al., "High thermoelectric performance in copper telluride", NPG Asia Materials, Vol, 7, pp. e210-e210, 2015.
[80] L. Yu, K. Luo, S. Chen et al., "Cu-deficiency induced structural transition of Cu 2− x Te", CrystEngComm, Vol, 17, pp. 2878-2885, 2015.
[81] J. Salmón-Gamboa, A. Barajas-Aguilar, L. Ruiz-Ortega et al., "Vibrational and electrical properties of Cu2− xTe films: experimental data and first principle calculations", Scientific Reports, Vol, 8, p. 8093, 2018.
[82] S. Mukherjee, R. Chetty, P.P. Madduri et al., "Investigation on the structure and thermoelectric properties of Cu x Te binary compounds", Dalton Transactions, Vol, 48, pp. 1040-1050, 2019.
[83] B.G. Kim, S.H. Bae, J. Byeon et al., "Stress-induced change of Cu-doped Bi2Te3 thin films for flexible thermoelectric applications", Materials Letters, Vol, 270, p. 127697, 2020.
[84] N.-H. Bae, S. Han, K.E. Lee et al., "Diffusion at interfaces of micro thermoelectric devices", Current Applied Physics, Vol, 11, pp. S40-S44, 2011.
[85] H.-H. Hsu, C.-H. Cheng, Y.-L. Lin et al., "Structural stability of thermoelectric diffusion barriers: Experimental results and first principles calculations", Applied Physics Letters, Vol, 103, p. 053902, 2013.
[86] L. Anatychuk and O. Luste, "Physical principles of microminiaturization in thermoelectricity," Fifteenth International Conference on Thermoelectrics. Proceedings ICT′96 pp. 279-287, 1996.
[87] C.-N. Liao, C.-H. Lee, and W.-J. Chen, "Effect of interfacial compound formation on contact resistivity of soldered junctions between bismuth telluride-based thermoelements and copper", Electrochemical and solid-state letters, Vol, 10, p. P23, 2007.
[88] R. Janoch, A.M. Gabor, A. Anselmo et al., "Contact resistance measurement-observations on technique and test parameters," 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) pp. 1-6, 2015.
[89] X. Kong, W. Zhu, L. Cao et al., "Controllable electrical contact resistance between Cu and oriented-Bi2Te3 film via interface tuning", ACS applied materials & interfaces, Vol, 9, pp. 25606-25614, 2017.
[90] X. Zhu, L. Cao, W. Zhu et al., "Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance", Advanced Materials Interfaces, Vol, 5, p. 1801279, 2018.
[91] M.-W. Jeong, S.-Y. Lee, H.-B. Park et al., "Stable interconnect system for horizontal thermoelectric coolers by thermodynamic-based prediction", Electronic Materials Letters, Vol, 15, pp. 654-662, 2019.
[92] H. Noro, K. Sato, and H. Kagechika, "The thermoelectric properties and crystallography of Bi‐Sb‐Te‐Se thin films grown by ion beam sputtering", Journal of Applied Physics, Vol, 73, pp. 1252-1260, 1993.
[93] G. Boisvert, N. Mousseau, and L.J. Lewis, "Surface diffusion coefficients by thermodynamic integration: Cu on Cu(100)", Physical Review B, Vol, 58, pp. 12667-12670, 1998.
[94] M.-C. Marinica, C. Barreteau, M.-C. Desjonquères et al., "Influence of short-range adatom-adatom interactions on the surface diffusion of Cu on Cu (111)", Physical Review B, Vol, 70, p. 075415, 2004.
[95] L. Wang, Z. Cao, K. Hu et al., "Effects of electric field annealing on the interface diffusion of Cu/Ta/Si stacks", Applied surface science, Vol, 257, pp. 10845-10849, 2011.
[96] H. Li, R. Brescia, M. Povia et al., "Synthesis of uniform disk-shaped copper telluride nanocrystals and cation exchange to cadmium telluride quantum disks with stable red emission", Journal of the American Chemical Society, Vol, 135, pp. 12270-12278, 2013.
[97] A.C. Poulose, S. Veeranarayanan, M.S. Mohamed et al., "Multifunctional Cu2− xTe nanocubes mediated combination therapy for multi-drug resistant MDA MB 453", Scientific reports, Vol, 6, p. 35961, 2016.
[98] M. Ahmad, K. Agarwal, and B. Mehta, "An anomalously high Seebeck coefficient and power factor in ultrathin Bi2Te3 film: Spin–orbit interaction", Journal of Applied Physics, Vol, 128, 2020.
[99] D.J. Lee, G. Mohan Kumar, V. Ganesh et al., "Novel Nanoarchitectured Cu2Te as a Photocathodes for Photoelectrochemical Water Splitting Applications", Nanomaterials, Vol, 12, p. 3192, 2022.
[100] L.M. Pavlova, Y.I. Shtern, and R.E.e. Mironov, "Thermal expansion of bismuth telluride", High Temperature, Vol, 49, pp. 369-379, 2011.
[101] B. Zhang, X. Li, and D. Li, "Assessment of thermal expansion coefficient for pure metals", Calphad, Vol, 43, pp. 7-17, 2013.
[102] Y. Lan, D. Wang, G. Chen et al., "Diffusion of nickel and tin in p-type (Bi, Sb) 2 Te 3 and n-type Bi 2 (Te, Se) 3 thermoelectric materials", Applied Physics Letters, Vol, 92, p. 101910, 2008.
[103] C.-P. Lin and C.-M. Chen, "The cross-interactions in the Ni/Sn/Cu diffusion couples with an electroless palladium surface finish", Journal of alloys and compounds, Vol, 547, pp. 37-42, 2013.
[104] S. Fujimoto, S. Sano, and T. Kajitani, "Analysis of diffusion mechanism of Cu in polycrystalline Bi2Te3-based alloy with the aging of electrical conductivity", Japanese Journal of Applied Physics, Vol, 46, p. 5033, 2007.
[105] X.-G. Zhu, J. Wen, G. Wang et al., "Doping nature of Cu in epitaxial topological insulator Bi2Te3 thin films", Surface science, Vol, 617, pp. 156-161, 2013.
[106] T. Lin, C. Liao, and A.T. Wu, "Evaluation of diffusion barrier between lead-free solder systems and thermoelectric materials", Journal of electronic materials, Vol, 41, pp. 153-158, 2012.
[107] M. Rizzo Piton, T. Hakkarainen, J. Hilska et al., "Optimization of Ohmic Contacts to p-GaAs Nanowires", Nanoscale Research Letters, Vol, 14, pp. 1-7, 2019.
[108] W. Liu, H. Wang, L. Wang et al., "Understanding of the contact of nanostructured thermoelectric n-type Bi 2 Te 2.7 Se 0.3 legs for power generation applications", Journal of Materials Chemistry A, Vol, 1, pp. 13093-13100, 2013.
[109] Z.-W. Sun, K.-W. Cheng, S.-W. Lin et al., "Stoichiometric Effect of Sb2Te3 Thin Film on Thermoelectric Property", ACS Applied Energy Materials, 2022.
[110] H. Zou, D.M. Rowe, and G. Min, "Growth of p-and n-type bismuth telluride thin films by co-evaporation", Journal of crystal growth, Vol, 222, pp. 82-87, 2001.
[111] Z.-h. Zheng, P. Fan, G.-x. Liang et al., "Annealing temperature influence on electrical properties of ion beam sputtered Bi2Te3 thin films", Journal of Physics and Chemistry of Solids, Vol, 71, pp. 1713-1716, 2010.
[112] J.H. We, S.J. Kim, G.S. Kim et al., "Improvement of thermoelectric properties of screen-printed Bi2Te3 thick film by optimization of the annealing process", Journal of Alloys and Compounds, Vol, 552, pp. 107-110, 2013.
[113] K.H. Seo, B.G. Kim, C.-H. Lim et al., "Doping amount dependence of phase formation and microstructure evolution in heavily Cu-doped Bi 2 Te 3 films for thermoelectric applications", CrystEngComm, Vol, 19, pp. 2750-2757, 2017.
[114] M. Zhang, W. Liu, C. Zhang et al., "Identifying the manipulation of individual atomic-scale defects for boosting thermoelectric performances in artificially controlled Bi2Te3 films", ACS nano, Vol, 15, pp. 5706-5714, 2021.
指導教授 吳子嘉(Albert T. Wu) 審核日期 2023-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明