博碩士論文 89521024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.19.56.114
姓名 陳書涵(Shu-Han Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 銻砷化銦鎵之雙異質接面雙極性電晶體成長 與特性分析
(Growth and Characterization of InGaAsSb Base Double Heterojunction Bipolar Transistors )
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主旨在於發展InGaAsSb材料之磊晶成長技術及研究其材料特性,同時將其應用於InP系列電晶體元件之基極,藉由改變磊晶成長條件以及設計不同電晶體元件之結構用以研究並探討其元件特性與材料之關係。相較於傳統單異質接面電晶體結構而言 (InP/InGaAs SHBT),使用InGaAsSb材料取代原本InGaAs材料作為基極結構,為一種嶄新的電晶體結構設計。由於在異質接面電晶體之結構中,基極材料為主導整體元件特性之重要關鍵層,選擇適當的基極材料形成良好之能帶結構,將大為提升元件之直流亦或是高頻效能。具備InGaAsSb材料為基極之InP/InGaAsSb/InGaAs電晶體,將縮減InP/InGaASb射極/基極介面能帶之導電帶不連續處,同時提高基極之導電與價電帶之位準,進而達到低導通電壓與高電流增益之良好特性。此外,於InGaAsSb/InGaAs基極/集極導電帶處將形成type–II之能帶型態,當電晶體元件操作在高電流密度時,擁有InGaAsSb基極之電晶體結構設計將同時具備延遲Kirk效應與抑制電流阻擋效應之能力,均優於其他使用傳統同質結構或是type–I基極/集極之電晶體結構。
在本實驗中,我們研究並且觀察其InGaAsSb材料中銦與銻之含量、三族與五族元素之比例 (V/III ratio)、與成長溫度對於其材料摻雜濃度與移導率之影響,以及材料成長於元件後,元件特性上的表現。研究發現,在基極中銻的含量對於電晶體元件之導通電壓、接面理想因子、以及直流特性均有顯著之影響。 我們製作其結構為InP/InGaAsSb/InGaAs之雙異質接面電晶體,成功達到0.32 V (VBE-on) 之低導通電壓。 此外,藉由小訊號等效電路模型之分析可萃取出元件內部之參數,亦證實由於InGaAsSb基極之電晶體在基/集極導電帶結構為type–II之能帶,因此造成集極處擁有較高之電子平均速率,進而達到較高之截止頻率。
電流增益/片電阻 (beta/RSH) 為一種驗證電晶體元件特性之比率數值,使用InAlAs作為電晶體元件之射極,將與InGaAsSb基極形成較高之導電帶不連續面,且仍能保持type–I能帶型態,進而維持高電流增益。相較於InP/InGaAsSb射/基極結構而言,作者設計InAlAs/InGaAsSb為其射/基極之電晶體結構,使得射/基極介面處具有較高之導電帶不連續面,提供較高之電子之注入能量因而縮短載子於基極傳輸時間。 為了同時達到高電流增益與較低之片電阻,我們對於InGaAsSb基極材料之磊晶參數也做了調整與優化,在調整磊晶參數後的InAlAs/InGaAsSb/InGaAs電晶體元件顯示,電流增益為52且片電阻778 Ohm/sq 之數值,為結構與材料同時優化之結果。
總體而言,使用InGaAsSb基極之電晶體可同時達到低導通電壓、高電流增益/片電阻之比率、高電流密度、以及高截止頻率等等好處,將可應用於低功率損耗之超高速電路中。
摘要(英) This dissertation describes the material growth and characterization as well as the device design, fabrication and characterization of InP-based heterojunction bipolar transistors (HBTs) with an InGaAsSb base layer. The use of InGaAsSb as a base layer in HBTs represents an entirely new technological approach as compared to the use of the conventional InP/InGaAs SHBT. Lower turn-on voltage and higher current gain, beta can be achieved with the InGaAsSb–base HBTs due to the reduction of conduction band offset and the increase of valance band offset at the InP/InGaAsSb emitter/base (E/B) junction. Moreover, the InGaAsSb/InGaAs base/collector (B/C) junction constitutes a type-II conduction band lineup. As a result of the postponed Kirk effect and the minimized current blocking effect, the InGaAsSb-base HBT is also superior to the homojunction base/collector or type-I double heterojuction bipolar transistors (DHBTs) when operated at high current densities.
In this study, we have investigated and examined the effects of In and Sb composition, V/III ratio, and growth temperature on the hole mobility and concentration in InGaAsSb as well as device performance. It is found that the Sb composition in the InGaAsSb base layer has a significant impact on the VBE turn–on voltage, the junction ideality and the dc performance of the DHBTs. A record low VBE turn-on voltage of 0.32 V at 1 A/cm2 is demonstrated in this work. Analysis based on a small signal equivalent circuit model shows that the InGaAsSb-base DHBT has a higher average velocity in the collector region and a higher cut-off frequency, resulting from the type-II InGaAsSb/InGaAs B/C junction.
Current gain over sheet resistance, (beta/Rsh), is a figure of merit to examine the dc performance of an HBT. For a higher current gain,beta, InGaAsSb-base DHBTs with an InAlAs emitter layer are grown and characterized. The InAlAs/InGaAsSb E/B junction has a higher conduction band offset and provides higher initial injection energy for the electrons than the InP/InGaAsSb E/B junction, thus making it possible to reduce the base transient time of the DHBTs. Besides, the growth conditions of the InGaAsSb base layer are modified in order to achieve a high current gain and a low sheet resistance simultaneously. A current gain of 52 and a RSH of 778 Ohm/sq are achieved in the InAlAs/InGaAsSb/InGaAs DHBT with a 44 nm-thick In0.24Ga0.76As0.61Sb0.39 base.
Overall, we demonstrate that DHBTs with an InGaAsSb base, which exhibit low VBE turn–on voltage, high beta/Rsh, high current density operation and high cut-off frequency, are highly promising for low-power consumption THz circuits.
關鍵字(中) ★ 低導通電壓
★ 銻砷化銦鎵
★ 異質接面電晶體
★ 分子束磊晶
★ 高速元件
關鍵字(英) ★ InGaAsSb
★ HBT
★ MBE
★ low turn-on
★ high-speed device
論文目次 Dissertation Abstract i
Acknowledgements iii
Contents iv
Figure Captions vii
Table Captions xiii
Chapter 1 Introduction 1
Chapter 2 Growth and Characterization of InGaAsSb Materials 6
2.1 InGaAsSb material 6
2.2 Molecular beam epitaxial growth 8
2.2.1 Ternary material growth 8
2.2.2 InGaAsSb material growth lattice–matched to InP 12
2.2.3 Photoluminescence spectra 16
2.2.4 Strain effect in the pseudomorphic InGaAsSb material 18
2.3 Material quality modification 20
2.3.1 V/III ratio 20
2.3.2 Electrical properties of the p+–InGaAsSb materials 23
2.4 Summary 26
Chapter 3 InP/InGaAsSb/In0.53Ga0.47As Double Heterojunction Bipolar Transistors 27
3.1 Layer structure design of InP/InGaAsSb/InGaAs DHBTs 27
3.2 MBE growth of InP/InGaAsSb/InGaAs DHBTs 29
3.3 DC characteristics 31
3.3.1 B/E junction I–V characteristics 31
3.3.2 Common–emitter output characteristics of the InP/InGaAsSb/InGaAs DHBT 36
3.3.3 Gummel plots of the InP/InGaAsSb/InGaAs DHBT 39
3.3.4 Base band gap of the In0.37Ga0.63As0.89Sb0.11 DHBT 43
3.3.5 Current transport in the In0.37Ga0.63As0.89Sb0.11 DHBT 47
3.4 High current characteristics 49
3.5 Microwave characteristics 53
3.5.1 High frequency and high current density haracteristics 53
3.5.2 Base transit time extraction 56
3.6 Summary 57
Chapter 4 Growth Improvements of the InGaAsSb Materials and Related DHBT Characteristics 58
4.1 Introduction 58
4.2 Growth modification of the InGaAsSb materials 59
4.2.1 InGaAsSb material lattice–matched to InP 59
4.2.2 InGaAsSb materials with different In and Sb content 61
4.2.3 Electrical properties of the p+–type InGaAsSb materials 63
4.3 Layer structure design of the InAlAs/InGaAsSb/InGaAs DHBTs 67
4.3.1 Advantages of type–I InAlAs/InGaAsSb E/B junction 67
4.3.2 MBE growth of InAlAs/InGaAsSb/InGaAs DHBTs 68
4.4 DC characteristics 72
4.4.1 B/E and B/C diode characteristics 72
4.4.2 Common–emitter (I–V) characteristics 75
4.4.3 Current gain improvement 77
4.4.4 Current gain versus collector current 81
4.4.5 Base sheet resistance 83
4.5 Summary 86
Chapter 5 Conclusions and Future Work 87
5.1 Conclusions 87
5.2 Future work 89
References 90
Appendix A 96
Appendix B 98
Publication List 99
參考文獻 [1] E. Tokumitsu, A. G. Dentai, C. H. Joyner, S. Chandrasekhar, “InP/InGaAs double heterojunction bipolar transistors grown by metalorganic vapor phase wpitaxy with sulfur delta doping in the collector region.” Appl. Phys. Lett., vol 57, pp. 2841–2843, 1990.
[2] K. Yang, G. O. Munns, G. I. Haddad, “High fmax InP double heterojunction bipolar transistors with chirped InGaAs/InP superlattice base–collector junction grown by CBE,” IEEE Electron Device Lett., vol 18, pp. 553–555, November. 1997.
[3] K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “Fabrication and characterization of high–performance InP/InGaAs double–heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 1319–1326, August 1994.
[4] H. Wang, Geok Ing Ng, “Electrical properties and transport mechanisms of InP/InGaAs HBTs operated at low temperature,” IEEE Trans. Electron Devices, vol. 48, pp. 1492–1497, August 2001.
[5] C. R. Bolognesi, N. Matine, M. W. Dvorak, X. G. Xu, J. Hu, and S. P. Watkins, “Non–blocking collector InP/GaAs0.51Sb0.49/InP double heterojunction bipolar transistors with a staggered lineup base–collector junction,” IEEE Electron Device Lett., vol. 20, pp. 155–157, 1999.
[6] M. W. Dvorak, O. J. Pitts, S. P. Watkins, and C. R. Bolognesi, “Abrupt junction InP/GaAsSb/InP double heterojunction bipolar transistors with fT as high as 250 GHz and BVCEO≧ 6 V,” Proc. IEEE Int. Electron Device Meeting, pp. 178–181, 2000.
[7] M. W. Dvorak, C. R. Bolognesi, O. J. Pitts, and S. P. Watkins, “300 GHz InP/GaAsSb/InP double HBTs with high current capability and BVCEO≧ 6 V,” IEEE Electron Device Lett., vol. 22, no. 8, pp. 361–363, Aug. 2001.
[8] Y. Oda, H. Yokoyama, K. Kurishima, T. Kobayashi, N. Watanabe and M. Uchida, “Improvement of current gain of C–doped GaAsSb–base heterojunction bipolar transistors by using an InAlP emitter,” Appl. Phys. Lett., vol. 87, p. 023503, Jul. 2005.
[9] H. G. Liu, O. Ostinelli, Y. Zeng and C. R. Bolognesi, “High–current–gain InP/InGaP/GaAsSb/InP DHBTs with fT= 436 GHz,” IEEE Electron Device Lett., vol. 28, no. 10, pp. 852–855, Oct. 2007.
[10] S. P. Watkins, O.J. Pitts, C.Dale, X. G. Xu, M. W. Dvorak, N.Matine and C. R.Bolognesi, “Heavily carbon–doped GaAsSb grown on InP for HBT applications,” J.Crystal Growth., vol. 221, pp. 59–65, 2000.
[11] H. G. Liu, N. Tao, S. P. Watkins and C. R. Bolognesi, “Extraction of the average collector velocity in high–speed type–II InP–GaAsSb–InP DHBTs,” IEEE Electron Device Lett., vol. 25, no. 12, pp. 769–771, Dec. 2004.
[12] H. G. Liu, O. Ostinelli, Y. Zeng and C. R. Bolognesi, “600 GHz InP/GaAsSb/InP DHBTs Grown by MOCVD with a Ga(As,Sb) Graded–Base and fT × BVCEO > 2.5 THz–V at Room Temperature,” in Iternation Electron Device Meeting., pp. 667–670, 2007.
[13] W. Snodgrass, B. Wu, K. Y. Cheng, and M. Feng, “Type–II GaAsSb/InP DHBTs with Record fT = 670 GHz and Simultenous fT, fMAX > 400 GHz ” in Iternation Electron Device Meeting., pp. 663–666, 2007.
[14] I. Vurgaftman, J. R. Meyer and L. R. Ram–Mohan; “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys., vol. 28, 5815–5875 (2001)
[15] S. H. Chen, S. Y. Wang, R. J. Hsieh and J. I. Chyi, “InGaAsSb/InP double heterojunction bipolar transistors grown by solid–source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 679–681, Aug. 2007.
[16] H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Garbuzov, S. Y. Narayan “2.78 mm InGaAsSb/AlGaAsSb multiple quantum–well lasers with metastable InGaAsSb wells grown by molecular beam epitaxy,” J.Crystal Growth., vol. 150, pp. 1354–1357, 1995
[17] M. Mebarki, D.Boukreeimi, S.Sadik and J. L. Lazzari “Electrical determination of band offsets in a p–Ga0.77In0.23As0.20Sb0.80/n–GaSb type–II heterojunction,”J. Appl. Phys., vol. 73, 2360–2363 (193)
[18] S. R. Forrest, P. H. Schmidt, R. B. Wilson, and M. L. Kaplan, “Relationship between the conduction–band discontinuities and band–gap differences of InGaAsP/InP heterojunctions,” Appl. Phys. Lett. vol. 45, pp.1199–1202, 1984
[19] J. Hu, X. G. Xu, J. A. H. Stotz, S. P. Watkins, A. E. Curzon, M. L. W. Thewalt, N. Matine, and C. R. Bolognesi, “Type II photoluminescence and conduction band offsets of GaAsSb/InGaAs and GaAsSb/InP heterostructures grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 73, pp. 2799–2801, 1998.
[20] M. Peter, N. Herres, F. Fuchs, K.Winkler, K.–H. Bachem, and J.Wagner, “Band gaps and band offsets in strained GaAsSb on InP grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 74, pp. 410–412,1999.
[21] C. R. Bolognesi, M. W. Dvorak, P. Yeo, X. G. Xu, and S. P. Watkins, “InP/GaAsSb/InP double HBTs: a new alternative for InP–based DHBTs,” IEEE Trans. Electron Devices, vol. 48, pp. 2631–2639, 2001.
[22] W. Snodgrass, B. Wu, W. Hafez, K. Y. Cheng, and M. Feng, “Graded base type–II InP/GaAsSb DHBT with fT = 475 GHz,” IEEE Electron Device Lett., vol. 27, no. 2, pp. 84–86, Feb. 2006.
[23] R. Kaspi and K. R. Evans, “Sb–surface segregation and the control of compositional abruptness at the GaAsSb/GaAs interface,” J.Crystal Growth., vol. 175/176, pp. 838–843, 1997.
[24] S.D. Wu, L. W. Guo, W. X. Wang, Z. H. Li, X. Z. Shang, H. Y. Hu, Q. Huang, J. M. Zhou, “The incorporation behavior of arsenic and antimony in GaAsSb/GaAs grown by solid source molecular beam epitaxy,” J.Crystal Growth., vol. 270, pp. 359–363, 2004.
[25] M. Levinshtein, S. Rumyantsev and M. Shur, Hand book series on semiconductor parameters, (World Scientific, Singapore, 1996).
[26] W. Liu, Handbook of III-V Heterojunction Bipolar Transistors, (Wiley–Interscience 1998).
[27] B. R. Wu, W. Snodgrass, W. Hafez, M. Feng and K. Y. Cheng, “Ultra–high speed composition graded InGaAsSb/GaAsSb DHBTs with fT=500 GHz grown by gas–source molecular beam epitaxy,” Proc. IPRM 2006, pp. 89–91, 2006.
[28] J. J. Ebers and J. L. Moll, Proc. Inst. Radio Eng. 42, 1761, 1954.
[29] S. C. Lee, J. N. Kau, and H. H. Lin, “Origin of high offset voltage in an AlGaAs/GaAs heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 45, pp. 1114–1116, 1984.
[30] J. H. Tsai, S. Y. Cheng, L. W. Laih, W. C. Liu, and H. H. Lin “An extremely low offset voltage AlInAs/GaInAs heterostructure–emitter bipolar transistor,” Superlattices and Microstructures., vol. 23, pp. 1297–1307, 1998.
[31] H. Fukano, H. Nakajima, T. Ishibashi, Y. Takanashi, M. Fujimoto, “Effect of hot–electron injection on high–frequency characteristics of abrupt In0.52 (Al,Ga)0.48As/InGaAs HBT’s,” IEEE Trans. Electron Devices, vol. 39, pp. 500–506, 1992.
[32] C. R. Bolognesi, H. G. Liu, N. Tao, X. Zhang, S. Bagheri-Najimi, and S. P. Watkins, “Neutral base recombination in InP/GaAsSb/InP double heterostructure bipolar transistors: Suppression of Auger recombination in p+ GaAsSb base layers,” Appl. Phys. Lett., vol. 86, 253506, 2005.
[33] B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, M. G. Ancona, “Antimonide–based compound semiconductors for electronic devices: A review,” Solid State Electron., vol. 49, pp.1875–1895, 2005.
[34] J. Singh, Electronic and optoelectronic properties of semiconductor structures, (Cambridge, London, 2003).
[35] J. Minch, S. H. Park, T. Keating, and S. L. Chuang; IEEE J. Quantum Electron., vol. 35, 771–782 (1999)
[36] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York.: Wiley, 1981).
[37] D. A. Neamen, Semiconductor physics and devices, 3nd ed. (McGraw-Hill, San Fransisco, 2003).
[38] H. Wang, C. Wah Ng, K. Radhakrishnan and G. I. Ng, “Current transport mechanism in InP/InAlAs/GaAsSb/InP double heterojunction bipolar transistors,” Proc. IPRM 2007, pp. 147–150, 2007.
[39] W. Liu, S. K. Fan, T. S. Kim, E. A. Beam III, D. B. Davito, “Current transport mechanism in GaInP/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 40, pp. 1378–1383, 1993.
[40] M. Yee and P. A. Houston, “High current effects in double heterojunction bipolar transistors,” Semicond. Sci. Technol, vol. 20, pp. 412–417, Mar. 2005.
[41] M. Lundstrom, Fundamentals of Carrier Transport. Cambridge, U.K.: Cambridge University Press, 2000, pp. 326–327.
[42] T. Kaneto, K. W. Kim, and M. A. Littlejohn, “A comparison of minority electron transport in In0.53Ga0.47As and GaAs,” Appl. Phys. Lett., vol. 63, pp.48–50, Jul. 1995.
[43] Z. Griffith, E. Lind, and M. J.W. Rodwell, “Sub-300 nm InGaAs/InP Type-I DHBTs with a 150 nm collector, 30 nm base demonstrating 755 GHz fMax and 416 GHz fT,” Proc. IPRM 2007, pp. 403–406, 2007.
[44] H. G. Liu, O. Ostinelli, Y. P. Zeng, and C. R. Bolognesi, “High–current–gain InP/GaInP/GaAsSb/InP DHBTs With fT = 436 GHz,” IEEE Electron Device Lett., vol. 28, no. 10, pp. 852–856, Aug. 2007.
[45] S.W. Cho, J.H. Yun, D.H. Jun, J.I. Song, I. Adesida, N. Pan, and J.H. Jang, “High performance InP/InAlAs/GaAsSb/InP double heterojunction bipolar transistors,” Solid State Electron., vol. 50, pp.902–907, 2005.
[46] D. Vignaud, J. F. Lampin, E. Lefebvre, M. Zaknoune, and F. Mollot, “Electron lifetime of heavily Be-doped In0.53Ga0.47As as a function of growth temperature and doping density,” Appl. Phys. Lett., vol. 80, pp.4151–4153, 3. Jun. 2002.
[47] I. Suemune, “Auger effects in acceptor–doped long–wavelength strained quantum well lasers,” Appl. Phys. Lett., vol. 55, pp.2579–2581, 18. Dec. 1989.
[48] M. C. Wang, K. Kash, C. E. Zah, F. L. Bhat, and S. L. Chuang, “Measurement of nonradiative Auger and radiative recombination rates in strained–layer quantum-well systems,” Appl. Phys. Lett., vol. 62, pp.166–169, 11. Jan. 1993.
[49] H. G. Liu, O. Ostinelli, Y. P. Zeng, and C. R. Bolognesi, “600 GHz InP/GaAsSb/InP DHBTs Grown by MOCVD with a Ga(As,Sb) Graded–Base and fT × BVCEO > 2.5 THz–V at Room Temperature,” pp.667–670, IEDM, 2007.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2008-10-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明