本論文利用單石微波積體電路(MMIC)來製作雙推式諧波振盪器,分別設計在兩個不同頻段下,Ka頻段(Ka-band)與V頻段(V-band)。第一部份所設計的MMIC Ka-band雙推式諧波振盪器電路實現乃利用穩懋半導體公司(WIN)0.15 ?m PHEMT 製程技術。一般常用的傳輸線分為微帶線(Microstrip line)和共平面波導(Coplanar Waveguide,CPW),在被動元件上的設計採用微帶線(Microstrip line)來進行電路之匹配、偏壓電路設計,振盪器設計方法是利用串聯回授方式產生負阻抗以達到振盪,如此可以比較容易掌握相位的變動,對於設計雙推式型態比較有利。在特性表現方面其中心頻率為30.22 GHz輸出功率為 -9.4 dBm,相位雜訊為 -97.55 dBc/Hz在離中心頻1 MHz時。 第二部份所設計的MMIC V-band雙推式諧波振盪器電路實現乃利用台積電半導體公司(TSMC)0.18?m CMOS製程技術。在被動元件上的設計採用共平面波導(Coplanar Waveguide,CPW)來進行電路之匹配、偏壓電路設計,將較於傳輸線其共平面波導可以省去背面製程(backside process),包含介質板的厚度薄化(substrate thinning)及背面鍍上金屬(backside metallization)還有穿孔(Via hole)等,所以製程更加容易。振盪器設計方法是利用串聯回授方式產生負阻抗以達到振盪。在特性表現方面其中心頻率為57.8 GHz輸出功率為 -27.98 dBm,相位雜訊為 -64.3 dBc/Hz在離中心頻1 MHz時。 This thesis presents monolithic push-push oscillators using WIN 0.15 ?m pHEMT and TSMC 0.18 ?m CMOS technologies at Ka-band (30.2 GHz) and V-band (57.8 GHz), respectively . First of all, the Ka-band push-push oscillator is designed and fabricated by WIN semiconductor Company using 0.15 ?m PHEMT technology. In the circuit, the microstrip line interconnect is designed to realize output matching and biasing circuits. And the oscillation results from the negative resistance by series feedback topology. By this way, it is easier to manipulate the changes of the phase to design push-push structure oscillator. The measurement results show that circuit oscillates at 30.22 GHz with phase noise of -97.55 dBc/Hz at 1 MHz and output power of -9.4 dBm. Secondly, the V-band push-push oscillator is designed and fabricated by Taiwan Semiconductor Manufacturing Company using 0.18 ?m CMOS technology. In the circuit, the oscillation is achieved by the same methodology in the Ka-band push-push oscillator. However, due to the technology without backside ground process, the coplanar waveguide (CPW) interconnect is used in the circuit not only to decease uncertain loss but also avoid complex processes such as backside process, substrate thinning, backside metallization and via hole. Besides, can be realized wide range characteristic impedance and decrease dispersion effect. The measurement results show that the circuit oscillates at 57.8 GHz with phase noise of -64.3 dBc/Hz at 1 MHz and provides output power of -27.98 dBm.