本論文主要研究銻砷化銦鎵(InGaAsSb)材料之磊晶成長技術及其材料特性,同時將其應用於磷化銦(InP)系列電晶體元件之基極。在雙異質接面雙極性電晶體中,藉由增加基極摻雜濃度能夠降低其片電阻(RSH)而提升高頻特性,然而此舉又會因為Auger process機率增加而降低其電流增益。對此問題我們藉由電晶體基極中的少數載子生命期,分析InGaAsSb材料中摻雜濃度對Auger process的影響。 本研究另一個重點為四元材料的成長。 我們發展出一套能夠成長InGaAsSb材料晶格匹配於InP基板上,又能夠任意調整Sb成分的成長技術。 藉由改變磊晶成長條件以及設計不同電晶體之結構用以研究元件特性與材料之關係。 在所製作的In0.52Al0.48As/In0.09Ga0.91As0.58Sb0.42/In0.53Ga0.47As DHBT上可以得到VBE=0.45 V的低導通電壓以及?/RSH=0.073的高電流增益/片電阻比,已與傳統InP DHBT之最佳結果相當。 This dissertation describes the material growth and characterization of InP-based heterojunction bipolar transistors (HBTs) with an InGaAsSb base layer, which have the advantages of low turn-on voltage and high current capability. High doping concentration in base to reduce the base sheet resistance is necessary for achieving high fMAX, but it might also result in decreased current gain and ?/RSH ratio due to the enhanced Auger process. To obtain more insights into the current behavior of InGaAsSb base DHBTs, doping effect on the electron lifetime (?n) is studied. In this research, we develop a growth technique for growing lattice- matched InGaAsSb on InP substrates with accurately controlled Sb composition. For a high Sb-content InGaAsSb layer, the amount of Ga is increased to complement the decreases of In while maintaining a constant growth rate and V/III ratio. In addition, the effects of Sb composition on the characteristics of InGaAsSb base DHBTs are investigated. The In0.52Al0.48As/ In0.09Ga0.91As0.58Sb0.42/In0.53Ga0.47As DHBT exhibits a low turn-on voltage of 0.45 V and a high ?/RSH ratio of 0.073, which is comparable to the state-of-the-art conventional InP DHBTs.