中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/10455
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41649764      線上人數 : 1393
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/10455


    題名: Takagi-Sugeno模糊控制系統之穩定度條件放寬與控制器設計;Relaxed Stability Conditions and Controller Design for Takagi-Sugeno Fuzzy Control Systems
    作者: 顏仲陵;Jung-Ling Yan
    貢獻者: 電機工程研究所
    關鍵詞: 穩定度放寬條件;T-S 模糊控制系統;relaxed stability conditions;T-S fuzzy control system
    日期: 2009-06-26
    上傳時間: 2009-09-22 12:17:46 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 非線性控制系統的穩定度判別是基於李亞普諾夫穩定準則(Lyapunov stability criterion),保證Takagi-Sugeno模糊控制系統穩定的充分條件,就是試圖找到一個共同正定矩陣P (common P)讓所有子系統皆滿足李亞普諾夫不等式(Lyapunov inequality),而控制器的設計方法多採用平行分配補償器(PDC)的概念,此方法稱之為共同二次李亞普諾夫函數(common quadratic Lyapunov function - CQLF)分析法,此共同正定矩陣P可透過MATLAB的線性矩陣不等式(LMI)控制工具箱的解法所求得,然而當模糊系統的規則數過多時,可能就無法找到這個共同正定矩陣P來符合所有子系統。 為了放寬此穩定度條件的保守性,近年來許多學者提出了許多有別於尋找單一共同正定矩陣P的新方法來定義李亞普諾夫函數 (Lyapunov function),常見的有模糊二次李亞普諾夫函數(fuzzy quadratic Lyapunov function - FQLF)分析法、模糊線積分李亞普諾夫函數(fuzzy line-integral Lyapunov function - FLILF)分析法和切換式二次李亞普諾夫函數(switching quadratic Lyapunov function - SQLF)分析法來推導Takagi-Sugeno模糊控制系統的充份穩定度條件,理論上此三種穩定度條件會比傳統的條件寬鬆許多,因為傳統的穩定準則只是此三種方法的特例。 由上述三種方法,我們可以藉由修改歸屬函數微分之絕對值上界的條件來放寬模糊二次李亞普諾夫分析法,另外藉由重建切換式Takagi-Sugeno模糊模型來放寬切換式二次李亞普諾夫函數分析法,最後則是結合模糊線積分李亞普諾夫函數分析法和切換式二次李亞普諾夫函數分析法兩大概念而推導出切換式模糊線積分李亞普諾夫函數分析法(switching fuzzy line-integral Lyapunov function - SFLILF),並以幾個例子來證明我們所提出的穩定度放寬條件的可行性。 The stability condition of nonlinear control system is based on the Lyapunov stability criterion. That tried to find a single positive-definite matrix P (common P) to satisfy all Lyapunov inequalities. Then the sufficient stability condition of Takagi-Sugeno fuzzy control system (T-S fuzzy control system) can be guaranteed. Furthermore, the controller design is using the Parallel Distributed Compensation (PDC) concept. This analysis method is so-call common quadratic Lyapunov function (CQLF) method. We use the linear matrix inequality (LMI) Control Toolbox of MATLAB to seek for a common P. However, if the number of rules of a fuzzy system is large, the common P may not be found. In order to relax the conservative of stability conditions, recent years many researchers have proposed several approaches different from a single common P. There have three common methods which redefine the new Lyapunov function are fuzzy quadratic Lyapunov function (FQLF) method, fuzzy line-integral Lyapunov function (FLILF) method and switching quadratic Lyapunov function (SQLF). Theoretically, these three methods are more relaxed than traditional method; because of the traditional analysis method is just a special case of these three methods. By the above three methods, we can revise the condition that are time-derivatives of membership functions’ absolute values to relax the FQLF method. Besides, reconstruct the switching T-S fuzzy model to relax the SQLF method. Finally is unifies the FLILF method and SQLF method concept to derive the switching fuzzy line-integral Lyapunov function (SFLILF) method. The effectiveness of the proposed approach is shown through numerical examples.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明