中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/10470
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41639785      Online Users : 1248
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/10470


    Title: 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制;Implementation of EEMD for Real-time control of SSVEP-actuated remote-controlled car
    Authors: 謝宗佑;Tsung-you Hsieh
    Contributors: 電機工程研究所
    Keywords: 大腦人機介面;穩態視覺誘發電位;整體經驗模態分解法;steady-state evoked potential (SSVEP);brain computer interface (BCI);ensemble empirical mode decomposition (EEMD)
    Date: 2009-06-28
    Issue Date: 2009-09-22 12:18:25 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 許多脊髓損傷患者或是其他類型患者像是肌萎縮性側索硬化症、腦幹中風、大腦或脊髓受傷、腦性麻痺、肌肉失養症、多發性硬化症等病患。這些患者無法與外界溝通或是自由的移動,為了改善這些行動有困難的人,使他們能夠自由移動,有種使用腦部直接控制電腦機械,不用透過肌肉來控制的一個溝通與控制管道,在此稱為大腦人機介面(Brain Computer interface, BCI),透過這個大腦人機介面,就可以讓這些脊髓損傷患者與部世界傳遞訊息以及傳遞控制命令。 本研究提出一個利用穩態視覺誘發電位達成的大腦人機介面系統,使用黃鍔所提出的整體經驗模態分解法(Ensemble Empirical Mode Decomposition, EEMD)去除基線漂移和其它雜訊,並利用Quadrature Detection來判斷SSVEP之頻率,並將此方法在LabVIEW平台上完成,之後使用433Mhz無線傳輸模組傳送控制訊號給遙控車,達到即時控制遙控車之BCI。 Patients with spinal cord injury or neuromuscular disorders, such as Amyotrophic lateral sclerosis (ALS), brainstem stroke, brain or spinal cord injury, cerebral palsy, muscular dystrophies, multiple sclerosis, and etc, can not communicate with external environments. In order to solve this problem, researchers are engaging themselves in developing new techniques, which are independent of their peripheral neuromuscular functions, to help them express their intentions. One plausible way, the brain–computer interface (BCI), has drawn great attention and regarded as a potential technique. This study adopts ensemble empirical mode decomposition (EEMD) to implement a fast steady-state visual evoked potential (SSVEP) – based BCI system. Taking the advantage of EEMD for noise suppression in pre-processing step, SSVEPs can be extracted with high signal-to-noise ratio (SNR) and it permits some phase detection technique, such as quadrature detection (QD), can be applied to estimate the existing frequency of SSVEP in a short-time data segment. The proposed system has successfully implemented to control a remote-controlled car with acceptable accuracy and high information transfer rate (ITR).
    Appears in Collections:[Graduate Institute of Electrical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明