English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41077565      線上人數 : 983
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/11115


    題名: 冪次轉換在製程監控上面的應用;Applications of Power Transformation on Process Monitoring
    作者: 高世州;Shih-Chou Kao
    貢獻者: 工業管理研究所
    關鍵詞: 位移參數;冪次轉換;常態分配;自然對數轉換;伽瑪分配;指數分配;location parameter;power transformation;normal distribution;exponential distribution;gamma distribution;natural logarithm transformation
    日期: 2005-12-31
    上傳時間: 2009-09-22 14:14:15 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 針對製程品質特性屬於指數分配型態者,多位學者提出以冪次轉換的方法,將原本屬於指數分配型態的資料轉換成近似常態資料,以便應用於統計品管上。但是,這些學者針對不同的準則,建議出不同的冪次轉換,並無一定的定論。本論文以轉換後的近似分配與理論的常態分配差異最小為評估基準,提出兩種不同評估準則來衡量指數資料轉換後近似常態的程度,此兩方法分別取轉換後近似分配與理論分配的(1)絕對差總和為最小,與(2)離差平方總和為最小,為評估基準。這兩種方法,得到轉換冪次分別為a = 3.5142和a = 3.5454。後經評估發現,轉換冪次介於[3.4, 3.77]時,其將指數分配轉換為近似常態分配的效果,彼此之間並沒有顯著的差異。然而,本研究也發現當指數分配具有位置參數(location parameter)時,不論使用的是冪次轉換或其他轉換方式,皆應先消除位置參數的影響,才能提升轉換的效果,否則轉換出的分配將明顯偏離常態。本論文進一步將研究成果推廣應用到伽瑪(gamma)分配型態的資料,以轉換後近似分配與理論分配的絕對差總和為最小為評估基準,獲得在不同樣本數下的轉換冪次係數,成功地將非常態分配的製程變異數轉換成近似常態分配,以利於統計品管的應用。 This dissertation presents the two methods, minimizing the sum of the absolute differences and minimizing the sum of the squared differences, to transform the exponential data to normality. a = 3.5142 and a = 3.5454 are obtained based on the two methods, and hence they can be applied in transforming an exponential distribution for statistical process control (SPC). This interval is [3.4, 3.77], which implies that exponents falling in this interval have very similar results in transforming the exponentials. This dissertation also presents transformation exponents to transform the gamma data by minimizing the sum of the absolute differences between these two distinct cumulative probability functions in SPC applications. The individual charts plotted using the transformed data by the proposed method are superior to those obtained using the original exponential data, the data and charts using the probability control limits, in terms of better performance, appearance and ease of interpretation and implementation by practitioners. Results of this dissertation demonstrate that the location parameter of an exponential distribution has a great effect on normalizing the exponential, whether it is the power transformation or natural logarithm transformation method. As long as a location parameter exists, the transformed data will deviate from normality.
    顯示於類別:[工業管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明