中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/11186
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41639914      在线人数 : 1244
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/11186


    题名: 以資料探勘技術進行消費者返廠定期保養之實證研究;The Research of Consumers' Preference For Automobile Maintainance using Data Mining Technique.
    作者: 胡智文;Chih-Wen Hu
    贡献者: 工業管理研究所碩士在職專班
    关键词: 資料探勘;定期保養;售後服務;決策樹;Regression Trees;after sales service;Maintenance;Data Mining
    日期: 2009-05-06
    上传时间: 2009-09-22 14:15:50 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 隨著近年來石油油價的飆漲與經濟的不景氣,造成汽車銷售市場逐年萎縮,各車廠在製造端沒有獲利的情況下,紛紛將目標轉為仍有廣大需求的售後服務市場,藉由在售後服務端的努力,使得業績得以維持不墜,並為各車廠帶來不少的營收。但各車廠在規劃服務活動時,常會遇到一些執行上矛盾或衝突的決策。本研究目的即在藉由分析客戶的返廠資料,針對已知的影響消費者返廠因素,區分出其重要性與影響程度,以作為後續相關人員在規劃服務活動時決策的參考。 本研究將四項已知的影響因子依據K-mean分群法與業界標準,訂定四項評估指標,再將返廠資料按照車型類別分成六群,分別進行評估,並將得出的結果以決策樹模型分析,找出具有影響的因子,區分出其重要性與影響。 本研究得到的結果如下:1.四項因子對消費者返廠保養的影響程度,其重要程度為返廠頻率 > 車齡 > 油價 > 區域。2.此次研究所得出的六種消費者返廠保養特性,可作為後續各車廠規劃服務活動時之參考。 Recently, the dramatic raise of the oil price and economic recession result in the downturn of the automobile market. Under the situation of earning a little profit, those automobile manufacturers shift their target to the after-sales markets, which still have big demand. With the effort made at after-sales side makes the sales volume stable and brings the considerable turnover to the manufacturers. However, manufacturers often find that there are conflicts existing between strategies when planning the service activities. This research analyzes the customers’ maintained data. Aiming at the known factors that effect the consumers' maintenance preference, we attempt to discriminate the importance and effect level of these factors in order to provide the management reference information for planning the service activities in the future. We define four evaluation indices by using K-mean clustering to group the 4 known factors and industry standard. Further, we divide the maintenance data into six groups according to the car series and analyze with one of decision tree technique CART. The significant factors are determined and their importance and effects are discriminated. The result of research shows: (1) The importance level of 4 factors for consumers' maintenance preference is that the first most important factor is frequency, the second is age, the third is oil price and the forth is the area. (2) The result of this research for six kinds of consumer’s maintenance feature can be a reference for further service activities planning.
    显示于类别:[工業管理研究所碩士在職專班 ] 博碩士論文

    文件中的档案:

    档案 大小格式浏览次数


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明