English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43367161      線上人數 : 1066
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/11852


    題名: 障礙選擇權之靜態避險- 以隱含波動率二項樹狀模型為架構;Static Hedges for Barrier Options: An Implied Binomial Tree Approach
    作者: 鄭宏泰;Hung-Tai Cheng
    貢獻者: 財務金融研究所
    關鍵詞: 靜態避險;障礙選擇權 (障礙式選擇權);隱含波動率;二項樹狀模型;靜態複製;static hedge;barrier option;implied volatility;implied binomial tree;static replication
    日期: 2001-06-30
    上傳時間: 2009-09-22 14:33:38 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 本文主要在研究在”微笑”波動率(volatility smile)的架構下,障礙式選擇權之靜態避險。吾人試著以隱含二項樹(implied binomial tree)的架構來評價選擇權。在此波動率的架構下,以靜態複製的方法取代傳統的動態避險策略。此外,在評價障礙式選擇權方面,本文採用一種調整的數值方法使得評價結果能夠更快速地趨近於選擇權的真值或是其解析解。 本文中,我們將隱含波動率的架構定義為隱含波動率與選擇權執行價相關的公式,而在此吾人略去到期期間對於波動率之影響(定義隱含波動率與時間為獨立的關係)。在建構隱含二項樹模型時,”不良機率”(bad probability)是一個很大的麻煩。在維持隱含波動率架構及其函數平滑之前提下,將導致不良機率之不良節點調整替換為好的節點。再者,由於隱含波動率樹狀模型之架構下,障礙式選擇權並無解析解,吾人所採用之調整數值方法省去許多計算所需時間,並改善了未調整數值之解不夠精確的問題。 在以靜態複製投資組合來做選擇權之避險時,投資組合中選擇權的數量必須在複製的精確性與選擇權之交易成本做取捨。使用愈多之選擇權來當作複製投資組合,將會得到愈好之複製效果;相對地,選擇權之交易成本也隨之愈大。在本文之釋例中,吾人發現採用十個選擇權之靜態複製投資組合,其複製效果的誤差遠小於使用五個選擇權當作複製投資組合。在其他的例證中,我們也比較了在隱含波動率的架構與常數波動率的架構之下,靜態複製之避險效果。 This paper investigates static hedge portfolios for barrier options with volatility “smile.” We try to value the option with an implied binomial tree approach. We replace the traditional dynamic hedging strategy with a static replication under this volatility structure. Moreover, in valuing options with barriers, we use the enhanced numerical method to make the value approach the analytic result much more rapidly. We define the smile in terms of implied volatility by giving a formula relating strike price to implied volatility, assuming the smile to be time independent. In constructing the implied binomial tree, “bad probability” is a big problem. We replace the bad nodes that generate a violation of the probabilities with the good nodes, which keep the implied local volatility function smooth. In addition, barrier options valued on an implied tree have no analytic solution. The enhanced method saves computing time and provides greater accuracy than an unenhanced binomial solution. When we hedge the options with a static replicating portfolio, the number of options should be chosen to balance an inaccurate replication against the options’ cost. The more options there are in our replication portfolio, the better the replication is, and the greater the transaction costs are as well. In the example, our findings show that the replication mismatch is much smaller when using ten options to replicate the target option instead of a five-option replication portfolio. We also compare the effect of the static replication between the implied volatility approach and the constant volatility framework.
    顯示於類別:[財務金融研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明