本文的目的在評價兩種信用衍生性商品: 違約交換選擇權與固定期間信用違約交換。本研究假設違約強度服從一動態隨機過程, 並利用Hull-White單因子三元樹狀模型評價信用衍生性商品, 以信用違約交換之市場報價隱含的違約強度校準模型, 進而分析回復率、違約強度波動度對信用違約交換選擇權之敏感度, 並比較歐式及百慕達式選擇權之價格差異。此外, 本研究分析違約強度曲線之斜率 變動及波動度對固定期間信用違約交換之影響。 The purpose of this study is to price two kinds of exotic credit derivatives: credit default swap (CDS) options, and constant maturity credit default swaps (CMCDS). We adopt a modified Hull and White one factor trinomial lattice to model for the stochastic default intensity. We calibrate our model to the implied default intensity, which are calculated using the CDS market quotes. Moreover, we conduct sensitivity analysis for recovery rate, intensity volatility on CDS option, and compare prices of European and Bermudan option. Finally, we study the impact of the sensitivity of default intensity curve and volatility on the price of CMCDS.