本論文主要研究Blatz-Ko材料圓形對稱動態波方程式,將非線性偏微分方程轉換至非線性常微分方程,使得求解過程簡化,再經由李群理論推導波方程各種的等值表示式與差分式,並利用Euler方法,Lax方法,Lax-Wendroff方法推導波方程各個差分式組合,各個差分式組合給予邊界條件,來觀察與分析最大誤差值,穩定特性,一致特性,準確特性。 This thesis investigates the symmetry properties of the finite difference schemes for the spherical wave equation for Blatz-Ko materials. We use the Euler method, Lax method and Lax-Wendroff method to derive difference schemes and investigate their group properties. The maximum error, stability, consistency and precision of these schemes are analyzed.