English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119307      線上人數 : 1331
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/12844


    題名: FP-Tree不同實作方式之效能比較;FP-Tree in different implement methods to compare the performances
    作者: 趙書榮;Shu-Jun Chao
    貢獻者: 資訊管理研究所
    關鍵詞: 資料挖掘;關聯規則;演算法;FP-tree;data mining;association rule;algorithm;FP-tre
    日期: 2002-10-18
    上傳時間: 2009-09-22 15:15:51 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 摘要 目前挖掘關聯規則的演算法可依需不需產生candidate itemset的作法分為兩類,例如Frequent-Pattern tree與Apriroi-like approach。此兩者最主要的差異在於,FP-tree並不產生candidate itemsets,它將資料庫壓縮在Frequent-Pattern tree的結構中,避免多次的高成本的資料庫掃瞄;後者是需要產生candidate itemset的方法。 而本文的目的是以應用Frequent-Pattern tree之理論,在實作方面以不同資料結構技術作效能比較測試,得到以那一種資料結構應用在Frequent-Pattern tree上執行時間之效能較佳。 在本文中共建立了(一)FP-tree_tail演算法,tail為在head table中增加一個tail欄位,(二)FP-tree_hash演算法,hash為以hash function計算出每個node所在位置方式建立FP-tree,(三)FP-tree_hash+tail演算法,為結合(一)、(二)之優點,所完成之演算法.,並將以上三個演算法與傳統FP-tree演算法一起比較,以找出各演算法之優缺點。經由本文實驗測試資料數據中,發現在各種實驗參數下,傳統FP-tree演算法所需花費之時間,為三個改良FP-tree演算法的數十倍。 now the algorithm in the association rules can be seperated two kinds.first is Apriori-like approach.second is Frequent-Pattern tree.main different between the above is the Frequent-Pattern tree did not to generate the candidate itemsets.its avoid a huge cost to scan database many times. this paper apply three different data structure(FP-tree_tail,FP-tree_hash,FP-tree_hash+tail) to improve Frequent-Pattern tree algorithm .then to compare the performance about them , accroding to the test data we found the performance of the FP-tree alogrithm are worst then the other algorithms many times.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明