English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23070423      Online Users : 415
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/12869


    Title: 以RSS演算法挖掘股市交易資料之研究
    Authors: 陳柏翰;Bong-Han Chang
    Contributors: 資訊管理研究所
    Keywords: 資料挖掘;約略集合;關連規則;序列樣式
    Date: 2001-06-26
    Issue Date: 2009-09-22 15:16:47 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 資料挖礦技術被稱為對資料作最佳的應用,它是一個新的研究領域,其目的在於透過自動化處理,從大量的資料中,挖掘出隱藏在其中的有用資訊、樣式,以對決策階層有所幫助。目前不論是在科學上或商業上,均大量使用資料挖礦的技術,來尋找出有用的規則、資訊,以幫助科學家或決策者進行正確的決策,且已有不錯的應用成效。 本論文主要是以約略集合(Rough Set)的方法,及資料挖掘技術中的關連規則的方法為基礎,發展出適合多屬性序列資料的演算法--RSS(Rough Set Sequence)演算法。此演算法先對所有的條件屬性進行篩選,只剩下最重要的條件屬性,而後再進行大集合序列的挖掘,最後在進行特徵關連的挖掘。而在本論中,我們以股市交易資料為例,將可能影響公司股價當作條件屬性,而將公司股價漲跌情形當作是決定屬性。由於造成股價漲跌情形的因素眾多,但實際上,某些因素可能對甲公司而言,其影響程度較為嚴重,但對乙公司而言,其影響程度可能較為輕微,例如,在本論中討論到影響股價漲跌的八個因素,並非每個屬性都有絕對的影響,因此我們在進行序列關連規則的挖掘前,先將對決策屬性有重要影響的條件屬性找出,過濾掉對決策屬性無幫助的條件屬性,接著再進行序列樣式的尋找,找出最長的序列樣式後,最後進行關連規則的尋找。
    Appears in Collections:[資訊管理研究所] 博碩士論文

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明