中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/12943
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41652642      Online Users : 1699
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/12943


    Title: 偵測灰階影像中的人造物體;Detecting Man-Made Objects in Gray-Level Images
    Authors: 黃彥博;Yen-Bo Huang
    Contributors: 資訊管理研究所
    Keywords: 適應式主動輪廓模型;改良式霍氏轉換;模糊影像對比增強;梯度影像分析;自動目標辨識;人造物體偵測;Automatic target recognition;Man-made object detection;Fuzzy image contrast enhancement;Modified Hough transform;Adaptive active contour model;Gradient image analysis
    Date: 2002-06-21
    Issue Date: 2009-09-22 15:19:33 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract:   戰場偵察長久以來一直都是戰術思維的重心,近年來有越來越多的偵察任務是利用機器來完成的,這些機器配有內建式感應器及自動目標辨識系統。   我們提出一個架構來實作自動目標辨識系統的偵測function利用梯度影像分析及直線偵測技術,將灰階影像中人造物體的概略輪廓描繪出來。首先,我們使用Sobel運算以取得影像的梯度,接著使用含有區域法則的模糊影像對比增強以去除背景及增強訊號弱的及訊號強的邊界;經過二元化、小區塊去除、及細線化後,我們使用改良式霍式轉換以偵測長的直線;利用這些直線,可以標示出可疑區域並利用這些區域以產生初始的物件輪廓;最後,我們利用適應式主動輪廓模型來進行輪廓趨近。   我們將之實作於一般的個人電腦上,而實驗結果顯示此架構能適用於大多數的環境條件下。 Reconnaissance has for centuries been at the heart of all thinking about infantry tactics. Nowadays, reconnaissance is increasingly assigned to machines. These machines are equipped with build-in sensors and automatic target recognition system (ATR) in it. We proposed a framework to perform the detecting phase in ATR systems. This system can label approximate man-made object contours in gray-level images via gradient image analysis and straight lines detection. We first use the Sobel operator to produce a gradient image. Then, use local fuzzy image contrast enhancement with a region criterion to degrade background and enhance both weak and strong edges. After the processes of binarization, small component removal, and edge thinning, we apply the modified Hough transform to detect long straight lines. Via these lines, we can label the region of interest and use them to produce initial object contours. At last of all, we apply the adaptive active contour model to perform contour approximation. Our experiment is performed on a PC and the experimental result shows that it works well under most environmental condition.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明