中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/12965
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 40889556      Online Users : 1295
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/12965


    Title: 運用屬性導向歸納法的技術挖掘序列資料的廣義知識;Mining generalized knowledge from ordered data through attribute-oriented induction techniques
    Authors: 沈清正;Ching-Cheng Shen
    Contributors: 資訊管理研究所
    Keywords: 屬性導向歸納法;概念階層;資料挖礦;關連式資料;序列資料;動態規劃法;Concept Hierarchy;Ordered Data Dynamic Programming;Data Mining;Attribute-Oriented Induction;Relational Data
    Date: 2005-06-23
    Issue Date: 2009-09-22 15:20:23 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 屬性導向歸納法(簡稱為AOI方法)是最重要的資料挖礦方法的其中一種,AOI方法的輸入值包含一個關連式資料表和屬性相關的概念階層,輸出是任務相關資料所歸納之廣義特徵,雖然AOI方法用在廣義特徵的尋找非常有用,但它只能挖掘關連式資料的特徵,這些資料並不具有序列性,如果資料具有序列性,現有的AOI方法就無法找到廣義的知識,基於這個問題,本論文提出一種以AOI技術為基礎的動態規劃演算法,可以從序列資料中找到廣義的特徵,透過演算法的使用,我們可以發覺一串連續K筆的序列歸納tuples,它可以用來描述K個連續資料區段的廣義特徵,而K值是可以由使用者自行定義。 The attribute-oriented induction (AOI for short) method is one of the most important data mining methods. The input of the AOI method contains a relational table and a concept tree (concept hierarchy) for each attribute, and the output is a small relation summarizing the general characteristics of the task-relevant data. Although AOI is very useful for inducing general characteristics, it has the limitation that it can only be applied to relational data, where there is no order among the data items. If the data are ordered, the existing AOI methods are unable to find the generalized knowledge. In view of this weakness, this paper proposes a dynamic programming algorithm, based on AOI techniques, to find generalized knowledge from an ordered list of data. By using the algorithm, we can discover a sequence of K generalized tuples describing the general characteristics of different segments of data along the list, where K is a parameter specified by users.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明