中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/13066
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41647785      在线人数 : 2235
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/13066


    题名: 在序列資料庫中挖掘多重時間間隔樣式;Discovering multi-time-interval sequential patterns in sequence database
    作者: 楊慧如;Hui-Ru Yang
    贡献者: 資訊管理研究所
    关键词: 知識挖掘;序列樣式;時間間隔;多重時間間隔;資料挖礦;Data mining;knowledge discovery;sequential patterns;multi time interval;time interval
    日期: 2004-05-31
    上传时间: 2009-09-22 15:22:50 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 序列樣式的挖掘在許多應用扮演十分重要的角色,包括生物電腦研究、顧客行為分析及系統效能研究等等,但是一般的序列樣式挖掘很少考慮到時間間隔,一直到Chen, Jiang, and Ko 提出時間間隔樣式挖掘之後,我們發現只挖掘出兩兩項目之間的時間間隔是不夠的,必須找出所有項目之間的時間間隔的樣式才能幫助決策者得到詳細請足夠的支援,於是我們提出兩項演算法:MI-Apriori以及MI-PrefixSpan分別改自Apriori以及PrefixSpan演算法,其中MI-PrefixSpan的效率優於MI-Apriori,而scalablity的表現則相反。 Sequential pattern mining is of great importance in many applications including computational biology study, consumer behavior analysis, system performance analysis, etc. Recently, an extension of sequential patterns, called time-interval sequential patterns, is proposed by Chen, Jiang, and Ko, which not only reveals the order of items but also the time intervals between successive items. For example: having bought a laser printer, a customer returns to buy a scanner in three months and then a CD burner in six months. Although time-interval sequential patterns are useful in predicting when the customer would take the next step, it can not determine when the next k steps will be taken. Hence, we present two efficient algorithms, MI-Apriori and MI-PrefixSpan to solve this problem. The experimental results show that the MI-PrefixSpan algorithm is faster than the MI-Apriori algorithm but the MI-Apriori algorithm has a better scalability.
    显示于类别:[資訊管理研究所] 博碩士論文

    文件中的档案:

    档案 大小格式浏览次数


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明