中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/26436
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41652689      Online Users : 1670
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/26436


    Title: Sublimation Point Depression of Small-Molecule Semiconductors by Sonocrystallization
    Authors: Lee,T;Chang,SC
    Contributors: 化學工程與材料工程學系
    Keywords: FIELD-EFFECT TRANSISTORS;THIN-FILM TRANSISTORS;CRYSTAL-STRUCTURE;ORGANIC SEMICONDUCTORS;EVAPORATED PENTACENE;HIGH-PERFORMANCE;ALQ(3);CRYSTALLIZATION;POLYMORPHS;TRIS(8-HYDROXYQUINOLINE)ALUMINUM(III)
    Date: 2009
    Issue Date: 2010-06-29 17:28:01 (UTC+8)
    Publisher: 中央大學
    Abstract: Small-molecule semiconductor solids such as pentacene and tris(8-hydroxyquinoline)aluminum(III) (Alq3) were dispersed in a poor solvent, like water, and insonated in a 10 mL scintillation vial with an output frequency of 20 kHz, a voltage of 1500 V, and an optimal induction time for 10 min at -13 degrees C. Sonocrystallization, at a low bulk solution temperature, gave pentacene powders of a high lattice energy difference value, Delta E-latt of 2.258 J/g (i.e., 0.6285 kcal/mol) caused by the poor crystallinity of 69% and produced Alq3 powders with only 37 wt % of the stable alpha-form and 63 wt % of the metastable epsilon-form mixed with an amorphous phase. Therefore, insonated pentacene and Alq3 powders had depressed sublimation points of 210 and 180 degrees C, respectively. However, surface energy and impurities had nothing to do with the sublimation point depression. The sublimation point depression of target materials could reduce the heating, and cooling duty of the vapor-phase deposition method for the manufacturing of organic light-emitting diodes (OLEDs), organic thin-film transistors (OTFTs), and photovoltaic (PV) cells drastically, because the total radiant-heat-transfer rate between heated surfaces is proportional to the fourth power of the absolute temperature according to the Stefan-Boltzmann law.
    Relation: CRYSTAL GROWTH & DESIGN
    Appears in Collections:[National Central University Department of Chemical & Materials Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML325View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明