中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/26562
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41650869      Online Users : 1436
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/26562


    Title: Modulating dopant segregation in floating-zone silicon growth in magnetic fields using rotation
    Authors: Lan,CW;Liang,MC
    Contributors: 化學工程與材料工程學系
    Keywords: CRYSTAL
    Date: 1997
    Issue Date: 2010-06-29 17:31:09 (UTC+8)
    Publisher: 中央大學
    Abstract: The feasibility of modulating dopant segregation using rotation for floating-zone silicon growth in axisymmetric magnetic fields is investigated through computer simulation. In the model, heat and mass transfer, fluid flow, magnetic fields, melt/solid interfaces, and the free surface are solved globally by a robust finite-volume/Newton's method. Different rotation modes, single-and counter-rotations, are applied to the growth under both axial and cusp magnetic fields. Under the magnetic fields, it is observed that dopant mixing is poor in the quiescent core region of the molten zone, and the weak convection there is responsible for the segregation. Under an axial magnetic field, moderate counter-rotation or crystal rotation improves dopant uniformity. However, excess counter-rotation or feed rotation alone results in more complicated flow structures, and thus induces larger radial segregation. For the cusp fields, rotation can enhance more easily the dopant mixing in the core melt and thus improve dopant uniformity.
    Relation: JOURNAL OF CRYSTAL GROWTH
    Appears in Collections:[National Central University Department of Chemical & Materials Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML444View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明