English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43993291      線上人數 : 834
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27944


    題名: Eddy Energy along the Tropical Storm Track in Association with ENSO
    作者: Hsu,PC;Tsou,CH;Hsu,HH;Chen,JH
    貢獻者: 數學研究所
    關鍵詞: WESTERN NORTH PACIFIC;SYNOPTIC-SCALE DISTURBANCES;INTRASEASONAL OSCILLATION;INTERANNUAL VARIATION;CYCLONE INTENSITY;ENERGETICS;WAVES;CIRCULATION;ORIGIN;MODEL
    日期: 2009
    上傳時間: 2010-06-29 19:38:35 (UTC+8)
    出版者: 中央大學
    摘要: The interaction between the seasonal mean circulation and the transient eddies over the western North Pacific (WNP) during El Nino-Southern Oscillation (ENSO) warm and cold years was investigated by the three-dimensional eddy kinetic energy (EKE) and eddy available potential energy (EAPE) budget equations for total eddy, high-frequency (< 10 days) and low-frequency (20-70 days) components. Composites of the energy results indicate that low-level anomalous cyclonic circulation, westerly jet and ascending motion associated with the eastward extension of warm SST during warm ENSO years are favorable for eddy barotropic energy conversion (CK) and eddy baroclinic energy conversions (CE). The enhancement of CK and CE might provide kinetic energy for the growth of high- and low-frequency transient eddies including tropical storms (TSs) from the Philippine Sea to the date line over the tropical WNP during warm ENSO years. In contrast, high- and low-frequency eddies convert EKE to seasonal mean circulation over the subtropical and mid-latitude WNP during warm years. Enhanced eddy baroclinic energy conversion plays an important role in the maintenance and enhancement of the subsequent development of transient eddies including TSs as they propagate northward. The loss of EAPE to EKE due to the eddy baroclinic energy conversion is mainly supplemented by the generation of EAPE associated with eddy diabatic heating. However, the energy conversion from mean available potential energy (MAPE) to EAPE is also important due to the eddy vertical heat transport which is neglected in the two-dimensional EAPE budget equation. It is suggested that high- and low-frequency eddies including TSs may be self-development and intensify through their enhanced diabatic heating and vertical heat transport.
    關聯: JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN
    顯示於類別:[數學研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML799檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明