English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119745      線上人數 : 1518
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/29646


    題名: A phenotypic genetic algorithm for inductive logic programming
    作者: Chien,YWC;Chen,YL
    貢獻者: 資訊管理研究所
    日期: 2009
    上傳時間: 2010-06-29 20:37:15 (UTC+8)
    出版者: 中央大學
    摘要: Inductive logic programming (ILP) is one of the most popular approaches in machine learning. ILP can be used to automate the construction of first-order definite clause theories from examples and background knowledge. Although ILP has been successfully applied in various domains, it has the following weaknesses: (1) weak capabilities in numerical data processing. (2) zero noise tolerance, and (3) unsatisfactory learning time with a large number of arguments in the relation. This paper proposes a phenotypic genetic algorithm (PGA) to overcome these weaknesses. To strengthen the numerical data processing capabilities, a multiple level encoding structure is used that can represent three different types of relationships between two numerical data. To tolerate noise, PGA's goal of finding perfect rules is changed to finding top-k rules, which allows noise in the induction process. Finally, to shorten learning time, we incorporate the semantic roles constraint into PGA, reducing search space and preventing the discovery of infeasible rules. Stock trading data from Yahool Finance Online is used in our experiments. The results indicate that the PGA algorithm can find interesting trading rules from real data. (c) 2008 Elsevier Ltd. All rights reserved.
    關聯: EXPERT SYSTEMS WITH APPLICATIONS
    顯示於類別:[資訊管理研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML997檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明