中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/43484
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41644022      Online Users : 1195
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/43484


    Title: 強健控制系統之寬鬆穩定條件;Relaxation Study Assuring Non-quadratic Robust Stability
    Authors: 蔡錦福;Chin-fu Tsai
    Contributors: 機械工程研究所
    Keywords: 線性矩陣不等式;非二次穩定;寬鬆矩陣變數;波雅定理;模糊控制系統;強健控制系統;Slack matrices;Linear matrix inequality;Takagi-Sugeno fuzzy control systems;Robust control systems;;olya Theorem;Parameter-dependent LMIs;Non-quadratic relaxations
    Date: 2010-06-21
    Issue Date: 2010-12-08 13:42:09 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本篇論文主要研究連續時間強健(Robust)控制系統及離散時間Takagi-Sugeno(T-S)模糊控制系統的非二次(non-quadratic)穩定寬鬆條件;我們利用波雅定理(P´olya Theorem)的代數性質加上寬鬆矩陣變數(slack matrix variables)來建立一組寬鬆的線性矩陣不等式(LMI),因為非二次(non-quadratic)穩定的分析加上寬鬆矩陣變數(slack matrix variables)的使用,使得此組線性矩陣不等式(LMI) 的求解保守性更進一步的降低,亦即當使用波雅定理 (P´olya Theorem)時,齊次多項式的階數不用太高,就可以找到解,這是本論文最大的優點;最後會提出幾個例子來證明我們理論的優越性。 In this thesis,we investigate non-quadratic ralaxation for continuous time robust control systems and discreate time fuzzy control systems,which are characterized by parameter-dependent LMIs (PD-LMIs),exploiting the algebraic property of P´olya Theorem to construct a family of finite dimensional LMI relaxations with righ-hand-side slack matrices that release conservatism.Certificates of convergence is proved.Lastly,numerical experiments to illustrate the advantage of relaxations,being less conservative and effective, are provided.
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML417View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明