English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41627017      線上人數 : 2258
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/43905


    題名: 二階非線性守恆律的整體經典解;Global Classical Solutions for the 2 × 2 Nonlinear Balance Laws
    作者: 李育誠;Yu-cheng Lee
    貢獻者: 數學研究所
    關鍵詞: 雙曲守恆律;非線性守恆律;柯西問題;整體經典解;特徵線法;Nonlinear balance laws;Hyperbolic conservation laws;Characteristic method;Global classical solutions;Cauchy problem
    日期: 2010-06-29
    上傳時間: 2010-12-08 14:26:13 (UTC+8)
    出版者: 國立中央大學
    摘要: 在這篇論文中,我們討論二階非線性系統守恆律的整體經典解存在性.使用特徵線法和A uniform a priori estimate我們去建立整體經典解的存在條件. In this thesis, we consider the Cauchy problem of 2 × 2 nonlinear hyperbolic balance laws whose source terms consist of the integral of unknowns. Such nonlinear balance laws arise in, for instance, the compressible Euler-Poisson equations of gas dynamics in Lagrangian coordinate. We are concerned with the global existence of classical solutions to the Cauchy problem of such differential-integro systems. We extend the results by Ta-tsien Li for quasilinear hyperbolic systems to our nonlinear balance laws. The method in this thesis based on the following three steps: (1) the theory of local classical solutions, (2) uniform a priori estimate, (3) global existence or blow up of classical solutions. We find the transformation so that the 2 × 2 system for the first derivatives of Riemann invariants are de-coupled under this transformation. So, the characteristic method for scalar equations can be applied.
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML822檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明