English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41688737      線上人數 : 1404
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/44616


    題名: 道路視覺偵測與自動導航系統之實現;Lane Visual Detection and Realization of the Autonomous Vision-Guided System
    作者: 陳宏偉;Hong-Wei Chen
    貢獻者: 電機工程研究所
    關鍵詞: 影像處理;模糊控制;車道線偵測;Fuzzy Control;Lane Detection;Image Processing
    日期: 2010-06-29
    上傳時間: 2010-12-09 13:50:36 (UTC+8)
    出版者: 國立中央大學
    摘要: 本篇論文主要為實現影像處理與控制器設計應用於輪型機器人之導航。整體架構以筆記型電腦為核心,搭配微控制器(BS2PX-IC),整合視覺影像與馬達控制,將控制策略建構在微控制器上,實現以模糊控制為基礎的輪型機器人導航。影像處理技術利用安裝在輪型機器人前方的CCD動態拍攝前方路況,透過擷取的影像做即時影像處理後取得路面資訊,進而找出車道線位置並估測出虛擬的車道中心線作為導航的依據。 本論文主要的重點分為兩部份:第一部份是影像處理及車道線偵測,第二部分是應用第一部分的結果,進行輪型機器人的導航。在影像處理及車道線偵測部份,為了因應不同的路面條件,使用動態二值化法將影像做二值化處理,取得基本車道線資訊,而根據車道線的性質將車道分為近端車道及遠端車道,在近端車道中用直線方程式去逼近以求得車道消失線(Vanishing line),除了簡化整張影像所要處理的部份外,亦作為動態搜索車道線交點的偵測線上限值。經過多層影像處理求得車道線後再求得車道中心線以獲取導航所需之角度。第二部份是模糊控制法則,在取得道路資訊後,利用影像處理後所獲取的車道線資訊建立模糊規則庫來進行輪型機器人的導航。The goal of this thesis is to realize image processing and controller design applies to navigate of the two wheels mobile robot. The control system is implemented in a laptop, along with microcontroller (BS2PX-IC). Integrating with vision image and motor control, the control strategy is established in microcontroller to realize navigation two wheels mobile robot based on fuzzy control. Utilize the CCD camera that mounted on the front of two wheels mobile robot to take dynamic road condition. With retrieve the image to obtain efficient lane line condition and find out lane line, and then estimate the lane centre line for navigation. The concept of this thesis can be divided into two parts, the first part is image processing. The second part is using the application of the result in the first part to navigate with wheeled mobile robot. In order to adapt the different surface of lane, we use dynamic threshold to distinct black and white in lane detection. Then, according to the difference of lane, we classified into near-point-lane and far-point-lane. In near-point-lane, we use function to calculate out the vanishing line. This method simply the image processing also the line becomes the upper bound of dynamic lane detection. After multi-image processing, we solve out the mid-line of the lane and obtain the angle for navigation. The second part is fuzzy control, after finishing the image processing part, we construct fuzzy rule to navigate the wheeled mobile robot.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML798檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明