中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/44782
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41691331      Online Users : 1445
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/44782


    Title: 從蛋白質交互作用網絡中偵測必要性蛋白質與蛋白質功能模組;Prediction of Essential Proteins and Functional Modules from Protein-Protein Interaction Networks
    Authors: 金家豪;Chia-Hao Chin
    Contributors: 資訊工程研究所
    Keywords: 分群演算法;蛋白質功能模組;必要性蛋白質;蛋白質交互作用網路;protein functional modules;essential proteins;protein-protein interaction network;clustering algorithm
    Date: 2010-08-31
    Issue Date: 2010-12-09 13:55:07 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在本論文中,我們說明如何應用圖形理論對蛋白質交互作用網絡進行資料探勘,並藉此偵測必要性蛋白質與蛋白質功能模組。對於偵測必要性蛋白質的研究,我們利用必要性蛋白質與非必要性蛋白質各自的鄰居所形成之子圖間有明顯差異的特性,發展出三種偵測必要性蛋白質的方法。除此之外,我們提出一種綜合兩種偵測方法的技巧,以得到更好的預測結果。對於偵測蛋白質功能模組的研究,根據前人研究顯示,蛋白質複合體是由核心成員和附屬成員所構成,依據該結果,我們設計出一種分群演算法,利用找出蛋白質交互作用網絡中的聚落以預測蛋白質功能模組,該方法不僅可以處理帶有權重的網路,並可利用基因表現的資料,以得到更好的預測結果。除此之外,我們經由設計一個評估分群結果的指標,藉由該指標對分群結果汰弱擇強,以提供更好的分群結果,並將其運用在蛋白質功能模組的偵測研究上。There are many bioinformatic methods for predicting protein’s functions. In this dissertation, we show how to apply graph theory to a protein-protein interaction network to predict essential proteins and functional modules. Based on the neighborhood of an essential protein is usually larger and denser than that of a non-essential protein, we proposal three methods to predict essential proteins. We also design a double screening scheme, which combines the results computed by two different methods, to generate a superior result. For predicting functional modules, we develop a clustering method which not only extract functional modules from a weighted PPI network, but also use gene expression data as optional input to increase the quality of outcomes. We also propose a measure to judge a cluster and use this measure to develop a framework that integrates the different clustering results to produce a better result.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML825View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明