中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/47063
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41640739      Online Users : 1368
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/47063


    Title: 複乘數橢圓曲線的庫默擴張;Kummer Extensions on Elliptic Curves with Complex Multiplication
    Authors: 陳燕美
    Contributors: 數學系
    Keywords: 橢圓曲線;複乘數;二次體;伽羅瓦擴張;elliptic curves;complex multiplication;quadratic fields;Galois extensions;數學類
    Date: 2010-08-01
    Issue Date: 2011-07-13 16:25:19 (UTC+8)
    Publisher: 行政院國家科學委員會
    Abstract: 令E 為定義在有理數上的一條橢圓曲線。假設E 有二次體中整數環的複乘數而且E 在質數q 為超奇異化歸。令P 為橢圓曲線E 上的有理點而且其階為無窮。令L 是K 加進所有q-扭轉點及所有Q 滿足[q]Q=P 的座標的擴張體。本計畫希望深入探討這個伽羅瓦擴張。 Let E be an elliptic curve defined over the rational numbers. Suppose that E has complex multiplication by a maximal order of an imaginary quadratic field K and has good supersingular reduction at a prime q. Let P be a rational point on E of infinite order. Denote by L the extension field joining the coordinates of q-torsion points of E and also the coordinates of all points Q satisfying [q]Q=P. In this project, we study the Galois extension L over K. 研究期間:9908 ~ 10007
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Department of Mathematics] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML427View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明