本世紀最待解決的議題之一即為再生能源的開發。第三代太陽能電池中的染料敏化太陽能電池( DSSCs )因具有透光性、多色彩、可撓曲及成本低廉等優點,成為近年來科學家研究的重點之ㄧ。本論文探討兩種不同的DSSCs染料的設計。首先是針對調整多功能性輔助配位基合成的釕金屬錯合物:CYC-B12;其次則為使用不對稱型固著配位基所合成的新型釕金屬錯合物分子:CYC-B23。CYC-B12的輔助配位基的結構是雙吡啶上接上thieno[3,2-b]thiophene來延長其共軛長度,末端接上咔唑衍生物DTBC作為推電子基。在此部分我們討論了不同電解質對電池元件之光電特性的影響,另外也利用Transient photoelectrical decay數據來說明電池元件在經過長時間加速老化後元件的表現變差的原因。由CYC-B12搭配高揮發性電解質Z960所組裝的電池元件,其整體光電轉換效率達9.4 %。CYC-B23為使用不對稱型固著配位基Ligand-B23搭配具有EDOT及硫烷鏈的輔助配位基Ligand-B20所合成的非對稱型釕金屬錯合物,本論文證實僅使用單一羧酸基的釕金屬錯合物染料分子仍具有良好的光電轉換效率,經過初步測試,使用CYC-B23所組裝的電池元件,短路電流密度為16.1 mA/cm2;開路電壓為0.754V;ff值為0.65,整體光電轉換效率可達7.91 %。本論文利用NMR鑑定合成的中間產物及最終產物的結構,亦利用理論計算(TDDFT、Semi-empirical ZINDO/1)得知染料分子之HOMOs與LUMOs的軌域分布,以瞭解邊界軌域與錯合物吸光性質之關連性。 The development of renewable energy becomes one of the most important issue in this centry. Dye-sensitized solar cell (DSSC), one of the 3rd generation photovoltaics, has caused lots of attention due to its colorful, flexible, transparent and low cost. In this thesis, we design and synthesis of two Ru-based sensitizers: CYC-B12 and CYC-B23 for DSSC. The ancillary ligand of CYC-B12 use thieno[3,2-b]thiophene to extend the conjugation length and DTBC, the carbazole derivative as a electron donor moiety was added in the terminal. For CYC-B12, we discuss the effects of the electrolyte on the performance of the devices. We also used Transient photoelectrical decay experiments to probe the reason for the decay in performance after aging process. DSSC device using CYC-B12 and the liquid electrolyte, Z960 has the overall power conversion efficiency of 9.4 %. CYC-B23 uses unsymmetrical anchoring ligand Ligand-B23 and ancillary ligand Ligand-B20. We have proved that good power conversion efficiency can be achieved by using ruthenium complex with only one carboxylic acid. With a preliminary testing, the device sensitized by CYC-B23 has a short-circuit photocurrent density of 16.1 mA/cm2, an open-circuit photovoltage of 0.754 V, and a fill factor of 0.65, yielding an overall conversion efficiency (η) of 7.91 %. NMR is employed to identify the structure of Ligand-B12 and Ligand-B23 and the corresponding complexes. Localizations of HOMOs and LUMOs in these sensitizers were calculated using TDDFT、Semi-empirical ZINDO/1. The relationships between the frontier orbitals and the light harvesting capacity of these Ru complexes was discussed.