中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/48127
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42141937      Online Users : 947
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/48127


    Title: 非共平面雙波導光路之光連接模組;Optical interconnect module with dual non-coplanar guide-wave optical paths
    Authors: 李建霖;Chien-in Li
    Contributors: 光電科學研究所碩士在職專班
    Keywords: 光連接模組;雙波導;非共平面;dual waveguide;non-coplanar;Optical interconnect module
    Date: 2011-10-07
    Issue Date: 2012-01-05 14:34:39 (UTC+8)
    Abstract: 中文摘要 本研究提出一個非共平面雙波導光路之光連接模組,其主要結構為一分光光路,此技術可應用於晶片內或晶片與晶片間光學訊號傳遞及擴充,也可作為檢視光學訊號的完整性。在架構上,模組屬於主動電子元件與與被動光子元件異側之光連接架構,利用波長為1550 nm的紅外光源穿透SOI基板,經過具光學品質的45°反射面達到非共平面光學耦合,透過分光結構可分為雙光路,再藉由具光學品質之45°反射面,將雙光路反射穿透SOI晶圓至主動電子元件層接收,將光電訊號做進一步的整合。光強的比例部分,可藉由調整經過 45°反射面達到非共平面光學耦合的波導寬度,進而得到不同比例的光強。此非共平面雙波導光路包含45°斜面反射溝槽、梯形脊狀波導與分光路結構波導。   本研究完成非共平面雙波導光路之光學模擬、製程與光學特性量測。上底寬40 ~75 μm的非共平面轉折波導光路,其插入損耗量測值在-3.04 dB至-3.22 dB。上底寬40 ~75 μm的非共平面雙波導光路的總插入損耗介於-3.46 ~ -3.9 dB,與非共平面轉折波導光路相比較插入損耗平均增加0.51 dB。上底寬40~75 μm非共平面雙波導光路之插入損耗,光路1量測值為-4.72 ~ -6.13 dB,光路2量測值為-11.48 ~ -6.86 dB。在雙光路的光強比例部分,可從8.3 : 1.7調整至5.4 : 4.6,並隨著上底寬的增加,光路1產生遞減的趨勢,而光路2則產生遞增的趨勢。上底寬45 μm的入射端的單模光纖位移容忍度,在水平方向(X軸方向)耦合能量損失1 dB時,光路1為50 μm與光路2為50 μm。垂直方向(Z軸方向)耦合能量損失1 dB時,光路1為26 μm與光路2為24 μm。上底寬55 μm的入射端的單模光纖位移容忍度,在水平方向(X軸方向)耦合能量損失1 dB時,光路1為52 μm與光路2為37 μm。垂直方向(Z軸方向)耦合能量損失1 dB時,光路1為25 μm與光路2為20 μm。 This research involves the design and evaluation of an optical interconnect module with non-coplanar dual waveguide paths. The primary feature of this module is a split optical path that can be used for transmission of optical signals within a chip or between chips, and can also be used to check the integrity of the optical signal. The module can serve as an optical interconnect framework between active electronic components and passive photon components are opposite side. The non-coplanar optical coupling is accomplished in the following manner. A 1550 nm infrared source first passes through a SOI substrate and is reflected from a 45-degree optical quality surface. It is then split into dual optical paths. Then it’s by using the 45-degree reflect surface to reflect the dual optical paths through the SOI substrate to active electronic component receiver to integrate the optical- electrical signal. The proportion of optical intensity is able to be adjusted by changing the width of waveguide that pass through the 45-degree reflect surface. Even further to get different proportion of optical intensity. This non-coplanar dual waveguide of optical paths includes 45-degree reflection groove, trapezoidal ridge waveguide and optical splitter waveguide. A laboratory model of the module was designed, fabricated, and key optical performance characteristics were evaluated. The insertion loss of upper-base-width 40~75μm non-coplanar bending waveguide is -3.04 to -3.22 dB. The total insertion loss of upper-base-width 40~75 μm non-coplanar dual waveguide is between -3.46 to -3.9 dB. Compared with non-coplanar bending waveguide, the total insertion loss averagely increases 0.51 dB. The measurements of insertion loss of upper-base-width 40 ~ 75 μm non-coplanar waveguide are -4.72 ~ -6.13 dB on optical path 1, and -11.48 ~ -6.86 dB on optical path 2. The proportion of optical intensity of dual optical path can be adjusted from 8.3 : 1.7 to 5.4 : 4.6, with the increase of upper-base- width, optical path 1 decrease and optical path 2 increase. Optical single mode fiber misalignment tolerance was also measured. For the 45 μm width module, 50 μm in path 1 and 50 μm in path 2 resulted in a horizontal (x-axis) loss of 1 dB, while for a 1 dB vertical (z-axis) loss, the corresponding tolerances were 26 μm for path 1 and 24 μm for path 2, respectively. For the 55 μm width module, the corresponding tolerances were 52 μm and 37 μm (horizontal 1 dB) and 25 μm and 20 μm (vertical 1dB), respectively.
    Appears in Collections:[Executive Master of Optics and Photonics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML1410View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明