本論文旨在研發與現今矽製程技術相容的三維鍺量子點陣列系統之形成方法。利用選擇性氧化複晶矽鍺可形成鍺量子點的技術,佐以奈米矽鍺柱狀結構的設計與實作,得以有效地控制鍺量子點的尺寸、數量與位置,進而實作出三維鍺量子點/二氧化矽/氮化矽陣列。分別利用掃描式電子顯微鏡、穿透式電子顯微鏡、陰極激發光光譜與拉曼光譜等物性與光性檢測技術來多面向地分析探討量子點的尺寸、位置、顆數、晶格結構/形變與吸/放光能力。同時也對此三維鍺量子點系統未來應用於太陽能光伏特電池與熱電元件的構想提出初步的評估與探討,預期可提高其能量轉換效益,使元件的特性最佳化。 The main theme of the thesis is to develop a COMS compatible process of three-dimensional (3D) germanium quantum dots (Ge QDs) array system. Using a simple method, “selectivity oxidation of polycrystalline SiGe” to form Ge QDs, combined with design and experiment of nano-patterned SiGe pillar structure to effectively control size, number and position of the Ge QDs. Then, we can fabricate a three-dimensional Ge QDs / silicon dioxide / silicon nitride arrays. We have studied the internal structure and optical properties of 3D Ge QDs array using scanning electron microscopy (SEM), transmission electron microscope (TEM), cathodoluminescence (CL) and Raman spectroscopy. In the future, we need to tailor 3D dense and size-tunable Ge QDs array, expect to boost the efficiency and optimize the device characteristics of solar cells and thermoelectric devices.