English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41628730      線上人數 : 3281
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/48973


    題名: 利用相關回饋資訊以提升文件分類之效能;Applying Relevance Feedback to Improving Text Classification Performance
    作者: 吳克能;Ke-neng Wu
    貢獻者: 資訊管理研究所
    關鍵詞: 權重調整;使用者興趣檔;特徵選取;文件分類;相關回饋;Feature selection;Re-weighting;User profile;Relevance feedback;Text classification
    日期: 2011-07-18
    上傳時間: 2012-01-05 15:11:49 (UTC+8)
    摘要: 隨著網際網路的快速發展,網路資訊爆炸(Information explosion)使得可存取的資訊量愈來愈多。資訊檢索系統在獲取資訊的過程中扮演很重要的角色,為了提升檢索的品質與滿足使用者的資訊需求,「文件分類」(Text classification)是一個重要的課題。本研究提出了一套方法,萃取相關回饋(Relevance feedback)的資訊建立使用者興趣檔(User profile),並透過此使用者興趣檔對文件進行特徵選取(Feature selection)與字詞權重調整(Re-weighting),其包含兩個概念:(1)使用者興趣檔代表了使用者正向與負向的興趣,文件只保留屬於此使用者興趣檔的維度以減少文件分類過程中雜訊之干擾。(2)字詞出現在使用者興趣檔或文件中的重要位置,則給予加權以增加相關文件與非相關文件特徵的差異性;文件特徵強化是字詞敏感度(term sensitivity)輔以半結構化資訊的應用。實驗結果證實,本研究的方法能夠有效地擷取相關回饋的資訊,輔助文件分類正確率的提升與大幅縮減至少一半以上的執行時間。 With the rapid development of the Internet, the information explosion across the Internet offers access to an increasing amount of information. Information retrieval system is playing an important role in the information retrieval process. In order to improve the retrieval quality and provide information in line with users’ need, “text classification” is an important issue. The study proposes an approach extracting information of relevance feedback to construct user profile for feature selection and term weighting adjustment of documents, and this approach consists of two concepts: (1) The user profile represents positive and negative interests of user, and the documents preserve only the features belonging to the user profile for reducing the noise interference in text classification. (2) The terms appearing in the user profile or important position in document are weighted for increasing the characteristic difference between relevant and non-relevant documents. Characteristic enhancement of documents is the application of term sensitivity aided by semi-structured information. The results of the experiments show that the proposed approach can extract information of relevance feedback effectively. Not only improving the accuracy of text classification but also at least a half of processing time can be greatly reduced.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML576檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明