English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119169      線上人數 : 1294
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/49005


    題名: 不同影像尺寸與不同特徵表達對影像辨識之影響;Object Recognition with Different Image Resolution and Different Feature Representation
    作者: 鍾穎慧;Yong-Hui Chung
    貢獻者: 資訊管理研究所
    關鍵詞: 影像特徵表達;影像註解;影像解析度;物件辨識;object recognition;feature representation;image annotation;image resolution
    日期: 2011-07-26
    上傳時間: 2012-01-05 15:12:44 (UTC+8)
    摘要: 隨著網路的蓬勃發展,影像資料的數量也日漸增加,有鑑於人工直接標註影像過於費時,自動物件辨識及影像註解議題應運而生。過去研究著重於如何在龐大的影像資料庫中有效率且準確的將影像自動命名。然而,隨著影像數量日漸增多,利用原尺寸影像進行標註,會降低演算法效能且占據大量儲存空間,此外,不同特徵表達方式也可能影響影像註解之準確率。因此本研究將分別以兩種構面探討其對影像註解之正確率影響。 實驗結果顯示,不同的特徵表達方式確實會影響影像註解之準確率,但影像解析度對於影像註解準確率的影響程度卻不高,且不同特徵表達方式受影像解析度的影響程度不同。 本研究使用 Corel、PASCAL 2008、Corel 5000 三種不同資料集,選擇影像內插法中最廣為運用的雙立方內插法(Bicubic Interpolation)將影像重新取樣(分為 256x256、128x128、64x64、32x32、16x16),特徵表達方式則分為區域特徵表達(Local Feature)、袋字模型(Bag-of-Words)特徵表達兩種。 With the advent of the Internet and an increase in web images, manual image annotation becomes a difficult task and more time-consuming than automatic image annotation. Most research proposed algorithms for matching the keywords and the images accurately. However, those methods annotated images in original resolution, and it might cost more time and storage. In addition, different feature representation approach can cause various performance of annotation .We aimed to annotate images with different resolution and different feature representation approach and discussed the effect of these two factors. We chose Corel, PASCAL VOC2008 and Corel 5000 to be our experiment data sets, and selected Bicubic Interpolation to scale these data sets into 256x256 resolution, 128x128 resolution, 64x64 resolution, 32x32 resolution and 16x16 resolution. Furthermore, local feature representation and Bag-of-Words feature representation were used in our experiment. In annotation step, we used support vector machine and K nearest neighbor algorithms. Finally, the experimental results indicated that the accuracy of annotation didn’t decrease but the time of annotation was reduced rapidly when the image resolution was diminished. Besides, we also compared two feature representation approaches, the performance of local feature representation was better than Bag-of-Words feature representation, especially in support vector machine. Meanwhile, in different resolution, the performance of Bag-of-Words feature representation was more stable than local feature representation.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML815檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明