English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43999194      線上人數 : 1268
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51595


    題名: Reinforcement evolutionary learning using data mining algorithm with TSK-type fuzzy controllers
    作者: Hsu,CY;Hsu,YC;Lin,SF
    貢獻者: 網路學習科技研究所
    關鍵詞: SYMBIOTIC EVOLUTION;GENETIC ALGORITHMS;DESIGN;SYSTEMS;NETWORK;HYBRID;GA
    日期: 2011
    上傳時間: 2012-03-27 18:57:00 (UTC+8)
    出版者: 國立中央大學
    摘要: Reinforcement evolutionary learning using data mining algorithm (R-ELDMA) with a TSK-type fuzzy controller (TFC) for solving reinforcement control problems is proposed in this study. R-ELDMA aims to determine suitable rules in a TFC and identify suitable and unsuitable groups for chromosome selection. To this end, the proposed R-ELDMA entails both structure and parameter learning. In structure learning, the proposed R-ELDMA adopts our previous research - the self-adaptive method (SAM) - to determine the suitability of TFC models with different fuzzy rules. In parameter learning, the data-mining based selection strategy (DSS), which proposes association rules, is used. More specifically, DSS not only determines suitable groups for chromosomes selection but also identifies unsuitable groups to be avoided selecting chromosomes to construct a TFC. Illustrative examples are presented to show the performance and applicability of the proposed R-ELDMA. Crown Copyright (C) 2010 Published by Elsevier B. V. All rights reserved.
    關聯: APPLIED SOFT COMPUTING
    顯示於類別:[網路學習科技研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML708檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明