中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51709
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41774033      線上人數 : 2082
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51709


    題名: How accurate is the square-root-of-time rule in scaling tail risk: A global study
    作者: Wang,JN;Yeh,JH;Cheng,NYP
    貢獻者: 財務金融學系
    關鍵詞: EMPIRICAL-EVIDENCE;VOLATILITY;RETURNS;MARKET;JUMPS
    日期: 2011
    上傳時間: 2012-03-27 19:03:20 (UTC+8)
    出版者: 國立中央大學
    摘要: The square-root-of-time rule (SRTR) is popular in assessing multi-period VaR; however, it makes several unrealistic assumptions. We examine and reconcile different stylized factors in returns that contribute to the SRTR scaling distortions. In complementing the use of the variance ratio test, we propose a new intuitive subsampling-based test for the overall validity of the SRTR. The results indicate that serial dependence and heavy-tailedness may severely bias the applicability of SRTR, while jumps or volatility clustering may be less relevant. To mitigate the first-order effect from time dependence, we suggest a simple modified-SRTR for scaling tail risks. By examining 47 markets globally, we find the SRTR to be lenient, in that it generally yields downward-biased 10-day and 30-day VaRs, particularly in Eastern Europe, Central-South America, and the Asia Pacific. Nevertheless, accommodating the dependence correction is a notable improvement over the traditional SRTR. (C) 2010 Elsevier B.V. All rights reserved.
    關聯: JOURNAL OF BANKING & FINANCE
    顯示於類別:[財務金融學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML631檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明