English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67621/67621 (100%)
Visitors : 23033876      Online Users : 58
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/51733

    Title: Using FSBT technique with Rough Set Theory for personal investment portfolio analysis
    Authors: Shyng,JY;Shieh,HM;Tzeng,GH;Hsieh,SH
    Contributors: 企業管理學系
    Date: 2010
    Issue Date: 2012-03-27 19:03:48 (UTC+8)
    Publisher: 國立中央大學
    Abstract: This study proposes a novel Forward Search and Backward Trace (FSBT) technique based on Rough Set Theory to improve data analysis and extend the scope of observations made from sample data to solve personal investment portfolio problems. Rough Set Theory mathematically classifies data into class sets. The class set with the most objects may generate one decision rule. The rules generated from RST are rough and fragmented, that are very difficult to interpret the information. An empirical case is used to generate more than 85 rules by the RST method in comparison with FSBT method which only generated 14 rules. This result can show our proposed method is better than traditional RST method based on class sets that contain the most objects. Much of human knowledge is described in natural language. It is a very important thing to convert information from computer databases into normal human language. Sample data taken from features with the same backgrounds are used to compile different portfolios that investment companies and investment advisors can employ to satisfy the investor' needs. The method not only can provide decision-making rules, but also can offer alternative strategies for better data analysis. We believe that the FSBT technique can be fully applied in research on investment marketing. (C) 2009 Elsevier B.V. All rights reserved.
    Appears in Collections:[企業管理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明