English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42841589      線上人數 : 1136
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51733


    題名: Using FSBT technique with Rough Set Theory for personal investment portfolio analysis
    作者: Shyng,JY;Shieh,HM;Tzeng,GH;Hsieh,SH
    貢獻者: 企業管理學系
    日期: 2010
    上傳時間: 2012-03-27 19:03:48 (UTC+8)
    出版者: 國立中央大學
    摘要: This study proposes a novel Forward Search and Backward Trace (FSBT) technique based on Rough Set Theory to improve data analysis and extend the scope of observations made from sample data to solve personal investment portfolio problems. Rough Set Theory mathematically classifies data into class sets. The class set with the most objects may generate one decision rule. The rules generated from RST are rough and fragmented, that are very difficult to interpret the information. An empirical case is used to generate more than 85 rules by the RST method in comparison with FSBT method which only generated 14 rules. This result can show our proposed method is better than traditional RST method based on class sets that contain the most objects. Much of human knowledge is described in natural language. It is a very important thing to convert information from computer databases into normal human language. Sample data taken from features with the same backgrounds are used to compile different portfolios that investment companies and investment advisors can employ to satisfy the investor' needs. The method not only can provide decision-making rules, but also can offer alternative strategies for better data analysis. We believe that the FSBT technique can be fully applied in research on investment marketing. (C) 2009 Elsevier B.V. All rights reserved.
    關聯: EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
    顯示於類別:[企業管理學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML472檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明