English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41644758      線上人數 : 1231
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51814


    題名: Gene clustering by using query-based self-organizing maps
    作者: Chang,RI;Chu,CC;Wu,YY;Chen,YL
    貢獻者: 資訊管理學系
    關鍵詞: EXPRESSION DATA;CELL-CYCLE;PATTERNS;BIOINFORMATICS;IDENTIFICATION;PROFILES;NETWORK
    日期: 2010
    上傳時間: 2012-03-27 19:06:46 (UTC+8)
    出版者: 國立中央大學
    摘要: Gene clustering is very important for extracting underlying biological information of gene expression data. Currently, SOM (self-organizing maps) is known as one of the most popular neural networks applied for gene clustering. However, SOM is sensitive to the initialization of neurons' weights. In this case, biologists may need to spend a lot of time in repeating experiments until they obtain a satisfactory clustering result. In this paper, we apply QBSOM (query-based SUM) to tackle the drawbacks of SOM. We have tested the proposed method by several kinds of real gene expression data. Experimental results show that QBSOM is superior to SOM in not only the time consumed but also the result obtained. Considering the gene clustering result of YF (yeast full) dataset, QBSOM yields 17% less in MSE (mean-square-error) and 68% less in computation cost compared with SOM. Our experiments also indicate that QBSOM is particularly adaptive for clustering high dimensional data such as the gene expression data. It is better than SUM for system convergence. (C) 2010 Elsevier Ltd. All rights reserved.
    關聯: EXPERT SYSTEMS WITH APPLICATIONS
    顯示於類別:[資訊管理學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML479檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明