中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/54328
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41658507      Online Users : 1634
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/54328


    Title: 由伯氏多項式對形狀限制的回歸函數定義最大概似估計量;Maximum likelihood estimation for a shape-restricted regression model by sieve of Bernstein polynomials
    Authors: 潘君豪;Pan,Chun-hao
    Contributors: 數學研究所
    Keywords: none;Bernstein polynomials;Area under the curve;rate of convergence;shape -restricted regression;sieve maximum likelihood estimate.;empirical process
    Date: 2012-07-24
    Issue Date: 2012-09-11 18:44:41 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 我們藉由伯氏多項式的次方和係數來對一個回歸函數定義最大概似估計量。如果我們已知回歸函數滿足某些形狀上的限制,例如單調性或凸性,則我們就可以透過對伯氏多項式的係數增加一樣的限制使得估計量達到相同的形狀限制。對於此類的最大概似估計量,當回歸函數連續時可建立出此估計量的收斂性;當回歸函數的導函數滿足利普希茨連續性時則可建立出此估計量的收斂速度。也是在一樣的條件下,估計量的積分也會弱收斂到回歸函數的積分。模擬分析展現出此方法在數值上的結果,除了對回歸函數的積分有良好的信賴區間的估計之外,此法亦表現得比貝氏方法及密度-回歸法更好(見Chang et al.(2007))。We consider maximum likelihood estimation (MLE) of a regression function using sieves defined by Bernstein polynomials, in terms of their order and coefficients. In case, that we know the regression function satisfies certain shape-restriction like monotonicity or convexity, we can impose corresponding restriction through the coefficients of the Bernstein polynomials in the sieves so that the estimate also satisfies the desired shape-restriction. For sieve MLE of this type, we establish its consistency when the regression function is continuous and its rate of convergence when its derivative satisfies Lipschitz condition. Under the same condition, we also show that the integral of the estimate converges weakly to that of the regression function at rate of root n. Simulation studies are presented to evaluate its numerical performance. In addition to excellent confidence interval estimates of area under the regression function, sieve MLE performs better than the Bayesian method based on Bernstein polynomials and density-regression method, reported in Chang et al. (2007).
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML679View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明