中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/54328
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41676789      線上人數 : 1446
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/54328


    題名: 由伯氏多項式對形狀限制的回歸函數定義最大概似估計量;Maximum likelihood estimation for a shape-restricted regression model by sieve of Bernstein polynomials
    作者: 潘君豪;Pan,Chun-hao
    貢獻者: 數學研究所
    關鍵詞: none;Bernstein polynomials;Area under the curve;rate of convergence;shape -restricted regression;sieve maximum likelihood estimate.;empirical process
    日期: 2012-07-24
    上傳時間: 2012-09-11 18:44:41 (UTC+8)
    出版者: 國立中央大學
    摘要: 我們藉由伯氏多項式的次方和係數來對一個回歸函數定義最大概似估計量。如果我們已知回歸函數滿足某些形狀上的限制,例如單調性或凸性,則我們就可以透過對伯氏多項式的係數增加一樣的限制使得估計量達到相同的形狀限制。對於此類的最大概似估計量,當回歸函數連續時可建立出此估計量的收斂性;當回歸函數的導函數滿足利普希茨連續性時則可建立出此估計量的收斂速度。也是在一樣的條件下,估計量的積分也會弱收斂到回歸函數的積分。模擬分析展現出此方法在數值上的結果,除了對回歸函數的積分有良好的信賴區間的估計之外,此法亦表現得比貝氏方法及密度-回歸法更好(見Chang et al.(2007))。We consider maximum likelihood estimation (MLE) of a regression function using sieves defined by Bernstein polynomials, in terms of their order and coefficients. In case, that we know the regression function satisfies certain shape-restriction like monotonicity or convexity, we can impose corresponding restriction through the coefficients of the Bernstein polynomials in the sieves so that the estimate also satisfies the desired shape-restriction. For sieve MLE of this type, we establish its consistency when the regression function is continuous and its rate of convergence when its derivative satisfies Lipschitz condition. Under the same condition, we also show that the integral of the estimate converges weakly to that of the regression function at rate of root n. Simulation studies are presented to evaluate its numerical performance. In addition to excellent confidence interval estimates of area under the regression function, sieve MLE performs better than the Bayesian method based on Bernstein polynomials and density-regression method, reported in Chang et al. (2007).
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML679檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明