中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/54968
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41640438      Online Users : 1378
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/54968


    Title: 離線搜尋Wikipedia以縮減NGD運算時間之研究;Using Offline Wikipedia Database to Reduce Time Costing of NGD
    Authors: 鄭奕駿;Cheng,Yi-chun
    Contributors: 資訊管理研究所
    Keywords: NGD;Wikipedia;Google;NGD;Wikipedia;Google
    Date: 2012-07-20
    Issue Date: 2012-09-11 19:13:47 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著網際網路的快速發展,各式各樣的網頁資訊持續不斷的增加,使用者可以輕易的從各種搜尋引擎及入口網站獲取大量的資訊,例如Google和Yahoo奇摩!等。然而根據Jansen et al.研究指出一般情況下大部分使用者僅輸入2.35個關鍵字,且大多為不清楚或不詳盡的關鍵字,結果回傳的文件過量導致資訊過載的問題。過去的研究文獻中,常使用資訊分類或過濾的方法來協助降低使用者的資訊存取成本,但是這些方法都必須建立在大量訓練資料為前提下才能有好的效果。近期研究提出NGD,藉由Google所提供的搜尋引擎利用輸入關鍵字所回傳的結果數,計算兩個字詞之間的抽象距離,進而得出兩個字詞所在的文件是否相似。但是NGD依賴Google的線上搜尋功能,以致次數頻繁而被拒絕使用搜尋服務,因此本研究有別於先前之研究,提出將Wikipedia建立成離線版搜尋引擎,透過Wiki結構化的概念和純度較高的資訊內容,解決使用Google搜尋引擎所遇到的困難。並經過實驗的證明,使用者使用離線版Wikipedia搜尋引擎時,本研究提出的方法仍能提供使用者維持穩定的過濾效能,並且節省使用者的大量時間成本。With the rapid development of Internet, many kinds of information website continued a steady increase; the user can easily obtain a great deal of information from a variety of search engines and portals such as Google and Yahoo! However, Jansen, et al. pointed out that under normal circumstances, most users enter only 2.35 keywords, and mostly unclear or incomplete keyword results in returning a lot of websites so that lead to information overload. The research literature in the past, often using the categories of information, or filtering to help reduce the cost of user access to information, but these methods have to be built under the premise of a large number of training data can have good results. Recent studies have proposed NGD provided by Google's search engine, key in the keywords to get the number of results to calculate the abstract distance between the two words, and then draw a conclusion of two words where the file is similar. However NGD rely on Google's online search function, with the high-frequency query, Google will refused user to use the search service. In order to solve this problem, this study advances a method that use Wikipedia to establish the offline search engine, because Wikipedia has a structured concepts and high purity content. And with the experimental proofs, when user uses the offline Wikipedia database, the method proposed in this study still provides the user has a stable filtration performance, and saves the user a plenty of time costs.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML631View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明