中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/55002
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41640763      Online Users : 1392
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/55002


    Title: 線上消費者購買行為之RFM分析-以“露天拍賣”的流行女裝為例;RFM Analysis of Purchasing Behavior of Online Consumers on Women's Fashion Clothing at Ruten Auction Website
    Authors: 林暐勝;Lin,Wei-Sheng
    Contributors: 資訊管理研究所
    Keywords: RFM模型;交易評價;再購行為;網路購物;線上消費者;Rating;Online shopping;Repurchase;Online consumers;RFM model
    Date: 2012-07-25
    Issue Date: 2012-09-11 19:14:42 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在台灣61.4%的網路族群有網路購物的經驗,只有28.6%的線上賣家已經獲利。因此,瞭解線上消費者的購買與再購行為,有助於電子商務業者找出潛在的回流顧客,進而降低成本、增加營收。行銷領域的RFM模型已經被廣泛地應用在消費者行為的實務和研究,本研究進一步考量拍賣平台所提供的公開資訊,包括評價、已上架時間、已購買次數、問與答筆數等,以建立一個以RFM模型為基礎的線上消費者再購行為影響因素的研究模型。本研究使用網頁內容探勘的方式,蒐集台灣露天拍賣中流行女裝類別商品在 2012/4/1~2012/5/31期間的真實交易資料,並以邏輯斯迴歸進行資料分析。其結果發現RFM模型與上次交易買家給予賣家的評價對於再購均有顯著的影響。本研究的管理和實務意涵對於網購平台業者和線上賣家有非常務實的建議。With 61.4% Internet users have ever purchased from online stores, only 28.6% online stores are making a profit. Therefore, understanding the purchase and repurchase behaviors of online consumers can help e-commerce businesses to identify potentially returning customers, thereby reducing costs and increase revenues. Given that RFM model has been widely adopted in marketing practice and research, this study takes a step further to consider other public information available at the platform, including the ratings, the elapsed on-shelf time, the number of purchased, and the number of Q&A’s, to established a research model on the repurchase behavior of online consumers based on the RFM model.Using web content mining technique we collected real transaction data of “women’s fashion clothing” from Taiwan’s Ruten auction website from April 1 to May 31 of 2012. Through the logistic regression analysis, we found that the factors of RFM model and the rating given by the buyer in the last purchase have significant impacts on repurchase. The managerial and practical implications of this study are suggested to platform businesses and online sellers.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML1065View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明