摘要: | 對於物理或生物科學上的模型,有許多可以 利用上述形態的微分方程來詮釋,在常微分方 程式的理論中,對於動態系統解之極限行為的 研究是其中有趣的課題之一,而在這個課題之 中一個令人關心的問題是何時該系統會有穩定 的週期解?暫不論穩定性,就二維動態系統而言, 利用Jordan curve定理,我們可以證得:對於該系統 之任一極限集合(limit set),假若它是緊緻的 (compact)而且不包含均衡點 (equilibrium),那麼它必 定是一簡單封閉曲線.(此蘊涵:該系統有一週期 解).此即 Poincar$\rm{ \acute e} $-Bendixson定理所述. 然而,對於三維或更高維度的情形,同樣的命題 一般而言並不成立(以下將稱滿足此命題的系統稱為具有Poincar$\rm{ \acute e} $-Bendixson性質. ) 雖然如此, 從Hirsch 的結果,我們知道當系統滿 足競爭(competitive) 或互助(cooperative)的條件時, 其極限集合的維度比該系統的維度少一維,(事 實上,它可嵌入另一比該系統維度少一維的系 統中.)特別對於三維的情形,Hirsch得到一系統只 要滿足競爭或互助的條件,那麼該系統就具有 Poincar$\rm{ \acute e} $-Bendixson性質.我們想探討,滿 足競爭或互助的系統以外,還有哪些高維度動態系統具有 Poincar$\rm{ \acute e} $- Bendixson 性質? 以及這些動態系統週期解的穩定性如何?這將 是本計劃想嘗試去學習與探知的主題. ; 研究期間 8408 ~ 8507 |