本研究將開發兩種複合式有機無機高分子電解質,第一部分之高分子電解質以三嵌段高分子 Jeffamine ED2003 與主鏈聚丙烯? polyacrylonitrile 高分子及有機矽源 3-胺丙基三甲氧基矽烷 (APTMS) 和 3-甘油丙基三甲氧基矽烷 (GLYMO) 水解聚合形成梳狀結構。此系列固態電解質在 30 度 C 時最佳離子導電度可達 7.4 × 10-5 S cm-1,電化學穩定性也可承受 4.0 V 的氧化裂解電壓,膠態電解質於 30 C 之離子導電度也可達到 10-3 S cm-1 以上與 4.5 V 的電化學穩定性,足可取代電池中之隔離膜與電解液部分來進行鋰電池之充放電循環。 另一部分為以聚乙二醇二甲基丙烯酸酯 Poly(ethylene glycol) diacrylate 作為交聯劑與 Jeffamine ED2003 形成前驅物,再導入矽源 3-甘油丙基三甲氧基矽烷 (GLYMO) 與 2-[甲氧基(聚乙烯養基)丙基]三甲氧基矽烷 (MPEOPS) 進行聚合水解,形成具有良好機械強度與高孔隙之直鏈型高分子電解質薄膜。固態電解質在最佳化鋰鹽加入量時於 30 度 C 離子導電度可達 1.5 × 10-4 S cm-1,同時電化學穩定性也可承受 4.5 V 的氧化裂解電壓。而其直鏈型結構提供了多孔隙之特性,可吸附大量液態電解質成為膠態電解質後室溫導電度最高可達 5.3 mS cm-1,進行鈕扣型電池充放電測試也可維持 30 次以上之循環壽命。此兩種高分子電解質在導電度、電化學穩定皆由良好的表現足以應用在鋰高分子電池中。 另一部分為具磷酸官能基之中孔洞矽材之固態核磁共振研究探討。在此開發出含有磷酸官能基之中孔洞矽材 SBA-15 利用直接合成法可成功製造出有機官能基矽源比高達 25%,且利用大量的固態核磁共振技術對含磷酸官能基之中孔洞矽材進行細部研究。利用 13C CPMAS NMR 與 31P MAS NMR 對初合成樣品、模板移除樣品和酸洗後樣品進行化學環境與官能基的鑑定。磷酸官能基在初合成樣品中的狀態為含酯類的自由擾動鏈段,31P MAS NMR 化學位移為 33 ppm,經過模板移除和酸洗後會得到 31P MAS NMR 化學位移為 32 ppm 與 22 ppm。經由除水實驗以及 NMR 中 29Si MAS NMR、1H31P29Si 兩段式交叉極化等技術解析出 22 ppm 為磷酸官能基與鄰近 Si-OH 形成氫鍵,以及少量的 P-O-Si 環狀結構。之後配合密度泛函理論 (Density functional theory, DFT) 計算 31P29Si 之間距離關係,配合 NMR 中的雙頻共振實驗 (Rotational echo double resonance, REDOR) 量測31P29Si 之間偶極作用力關係進一步推算出 31P29Si 相對距離,可發現實驗結果與理論計算結果相符合。此實驗方式提供了有機官能基在中孔洞矽材中微觀環境之光譜證明,並解析出異核原子之間距離關係,結合了 NMR 實驗部分與 DFT 理論計算使中孔洞矽材中有機官能基之空間環境有了進一步的了解。 Two types of new hybrid organic-inorganic polymer electrolytes have been synthesized and characterized. One series is comb-branched polymer based on polyacrylonitrile, Jeffamine ED2003 and silica sources like APTMS and GLYMO. A maximum ionic conductivity value of 7.4 × 10-4 S cm-1 at 30 oC is achieved for the hybrid electrolyte. The present hybrid electrolyte system offers a remarkable improvement in ionic conductivity and mechanical strength. The 7Li NMR (nuclear magnetic resonance) results reveal that there exists a strong correlation between the dynamic properties of the charge carriers and the polymer matrix. The electrochemical stability window is found to be around 4.0 V. And the gel polymer electrolyte reached a maximum conductivity value of 5.3 mS cm-1 at 30 oC and electrochemical stability up to 4.5 V, the high ionic conductivity of gel polymer electrolyte is sufficient for application of lithium ion batteries. The other system is coss-linked network polymer, base on Poly(ethylene glycol) diacrylate (PEG-DA), Jeffamine ED2003, and silica sources like MPEOPS and GLYMO. A maximum ionic conductivity value of 1.5 × 104 S cm-1 at 30 oC is achieved for the hybrid electrolyte with a [O]/[Li] of 16. The electrochemical stability window is found to be around 4.3 V. The swelling ratio and ionic conductivity are measured with organic electrolyte, the gel polymer electrolyte achieved 5.3 mS cm-1 at 30 oC. And as the gel polymer electrolyte, the test cell shows good cycling performance up to 30 cycles. The solid and gel polymer electrolytes hold promise for applications in lithium polymer batteries. And the other project is well-ordered mesoporous silicas SBA-15 functionalized with variable contents of phosphonic acid groups (up to 25 mol % based on silica) have successfully synthesized via co-condensation of 3-triethoxysilylpropyldiethylphosphonate (PETES) and tetraethoxysilane (TEOS) using triblock copolymer Pluronic P123 as the structure-directing agent under acidic conditions. The status and local structures of the phosphonic functional groups were investigated by extensive multinuclear solid-state NMR studies. 13C and 31P NMR results revealed that phosphonic ester moieties were obtained for the as-synthesized samples and for the samples subjected to template removal by concentrated H2SO4. After surfactant removal, there are two distinct phosphorous sites present in the materials. The generation of phosphonic acid groups can be accomplished by dealkylation reaction via treating with concentrated HCl. Two distinct local environments for the phosphorus sites of phosphonic acid groups have been observed at 32 and 22 ppm in the 31P magic angle spinning (MAS) NMR spectra. The relative ratio between these two species is strongly depends on the moisture present in the materials. The PO3H2 groups forming the hydrogen bonds with the nearby Q3 Si-OH are the major species responsible for the 22 ppm peak based on the results of 1H-31P-29Si double cross-polarization NMR experiments and density functional theory calculations (DFT). Of particular interest is that 29Si {31P} rotational echo double resonance (REDOR) NMR experiments are utilized to measure 31P29Si distances between the phosphorus site and the silica framework. A 29Si31P distance of 5.0 ? is obtained for the phosphorus site to the silicon site of the Q3 species for the as-synthesized sample. A reasonable fitting to the REDOR data for the acidified sample can also be achievable by assuming the presence of different structural units. The combination of solid-state NMR studies and the DFT calculations allow one to gain deeper insights into the local environments of the organic groups functionalized in mesoporous silica materials.