English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119921      線上人數 : 1354
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/61166


    題名: 粒子群演算法應用於語者模型訓練與調適之研究;PSO Algorithm for Speaker Model Training and Adaptation
    作者: 吳昱弘;Wu,Yu-hung
    貢獻者: 電機工程學系
    關鍵詞: 粒子群演算法;語者模型;PSO algorithm;Speaker model
    日期: 2013-07-05
    上傳時間: 2013-08-22 12:13:42 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文將粒子群演算法應用於語者模型訓練與調適。由於簡單的概念、快速收斂與容易實現,粒子群演算法比基因演算法在處理各式各樣的工程問題上更有效。目前在本論文所使用的粒子群演算法,都是使用沒有改良過的粒子群演算法,原因在於我們的適應函數是用高斯混合的機率密度函數,此函數沒有過於複雜的數學式,所以我們僅使用最原始的粒子群演算法。在傳統的語者確認系統中,模型參數估計大多使用Expectation-maximization (EM) 演算法,在模型收斂過程中,EM演算法要花較多的時間去訓練模型,所以我們提出新的訓練方法,使用粒子群演算法來收斂模型。並從實驗的結果獲得比EM演算法更小的相等錯誤率與決錯成本函數,且其訓練模型的速度也優於EM演算法,確定所提方法的有效性。此外,在做語者模型調適時,平均向量是語者不特定模型最重要的參數,本論文結合粒子群演算法來獲得最佳的平均向量,實驗的結果顯示,本論文所提之方法,比起原本使用的Maximum a Posteriori (MAP) 調適法,可以使語者確認系統的效能提升。
    This thesis introduces the application of Particle swarm optimization (PSO) techniques to speaker model training and adaptation problems. In convention, the Expectation-maximization (EM) algorithm is the dominant approach for model parameter estimation in speaker verification. The experimental results demonstrate that faster convergent rates for training and more accurate rates for speaker verification are obtained using the proposed PSO algorithm as compared to the EM algorithm. In addition, this thesis also utilized proposed the PSO algorithm to adjust the mean parameter in the speaker model adaptation. Experimental results again show that the proposed method outperforms the Maximum a Posteriori (MAP) adaptation in the speaker verification problem.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML640檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明