中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/61653
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41648494      Online Users : 1452
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/61653


    Title: 內建鍺量子點於PIN奈米線穿隧場效光電晶體之研製;Development of germanium quantum dots embedded the naonwire PIN tunneling field-effect phototransistor channel
    Authors: 張旭順;Chang,Hsu-shun
    Contributors: 電機工程學系
    Keywords: 光電晶體;奈米線;鍺量子點
    Date: 2013-08-26
    Issue Date: 2013-10-08 15:24:46 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文呈現將鍺量子點崁於矽奈米線之PIN穿隧電晶體通道之中,實作論證因鍺量子點的強大量子侷限效應確實有利於可見光線的吸收。
      分別以BF2與As離子佈植製作P型源極與N型汲極之後,沉積非晶矽薄膜並搭配長時間退火以形成微小晶粒之複晶矽薄膜。接續以低壓化學氣相沉積方法陸續成長氮化矽與矽鍺薄膜,再佐以電子束微影與蝕刻製作定義出70 nm線寬之複晶矽鍺/氮化矽/複晶矽奈米線結構。經披覆氮化矽側壁保護層後,以熱氧化將矽鍺奈米線轉換成12 nm鍺量子點崁於氮化矽與複晶矽奈米線通道之間。在定義約300 nm之複晶矽閘極製程之後,即以傳統之後段金屬製程完成內建鍺量子點於PIN奈米線穿隧場效光電晶體之研製。
    PIN奈米線穿隧場效電晶體之Ion/Ioff電流比值可達近104。經可見光至近紅外光線400–550、700以及980 nm的波長照射調變下,鍺量子點PIN穿隧電晶體之Ion電流分別可放大10、5以及1–2倍,但暗電流不受照光之影響仍然維持10-16 A。由光譜響應之分析可知,可見光之光電流調變因是來自於12 nm鍺量子點經量子侷限效應作用後,電子能結構由原本之間接能隙轉換為分裂能階所致。
    本文所提出PIN奈米線穿隧場效光電晶體可展現清楚可見光調變與放大電流之能力,極具潛能將可見光偵測與電流放大之功能整合於一體,達成光電有效轉換之放大功效。
    This thesis demonstrates that germanium quantum dots into the dielectrics of PIN nanowire tunneling field-effect phototransistor add provide an effective way to absorb visible light, significantly enhancing the photocurrent under the illumination of 300–600 nm.
    Following the respective BF2 and As implantation for the formation of source and drain, an 45 nm amorphous Si layer was deposited followed by a 24 hour, 600℃ anneal. This long-duration anneal was able to form tiny grains of Poly-Si through solid phase crystallization. A bilayer of Si3N4 and SiGe was deposited followed by a combination of electron-beam lithography and plasma etching, leading to the generation of a 70 nm-wire SiGe/Si3N4/Si nanowire structure. Following a Si3N4 spacer coating, the nanowire structure was thermal oxidized to form 12 nm Ge quantum dots embed and with the core of the Si3N4 nanowire. The QD PIN TFTs were finally realized typical contact and metallization process.
    The QD PIN NW transistors exhibit a symmetrical, polarity Id-Vg transfer characteristics under position and negative gate voltage modulation. The Ion/Ioff ratio is up to 104. Notably, the Ion could be significantly enhanced by a factor of 10, 5 and 2 respectively, under the illumination of 400–550, 700 and 980 nm, but the dark current is independent of illumination influence remained 10-16 A. The photocurrent increase with an increase in the light power, showing a good linearity.
    The demonstrated PIN nanowire tunneling field effect phototransistor exhibit clear photocurrent enhancement in response to visible light modulation, offering great potential for visible light detection and current amplification.
    Appears in Collections:[Graduate Institute of Electrical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML529View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明