心血管系統模型的用途十分廣泛,常運用在臨床診斷、藥品測試和醫療儀器開發等方面。本研究的目的是以生理資料為基礎建構心血管系統模型,根據生理文獻上的資料將模型中的血管阻力與順應性以等效的電路元件來模擬,進行多個週期的模擬及觀察模擬的結果。除此之外,在模型中加入神經系統的調控,使模型可模擬交感神經對心室體積與血管阻抗的監控,以達到維持血壓的功能。除了模擬正常情況下的生理現象,我們也做了其他兩種病態的模擬,此兩種病態分別為主動脈瓣膜狹窄與僧帽瓣膜狹窄。從結果顯示本論文的心血管系統模型可以成功模擬出正常時的右心臟、左心臟和其它部位血管的血壓以及瓣膜異常的病理特徵,比較模擬結果和文獻與生理書上的資料 ,驗證系統模型在模擬上的可行性。 The cardiovascular system models could be widely used in clinical diagnosis, drug testing, development of medical instrumentation, and so on. The purpose of this study is to build a cardiovascular system model based on the physiological data. The equivalent circuit elements were used to model the resistance and compliance of the vascular system, implement the multi-cycle simulation, and observe the simulated results. Furthermore, the neural control was added to regulate simulation of the model. This neural control provided simulation of the autonomic regulation on the blood pressure through the ventricular volume and vascular resistance. In addition to the simulation of normal condition, the model was used to simulate two pathological conditions, i.e., aortic and mitral valve stenoses. Comparison between the results of our simulation and previous literature studies, our results showed that this cardiovascular system model was capable to simulate normal blood pressure of right heart, left heart, other parts of the blood vessels, and pathological features of valve stenosis and indicated its feasibility as a cardiovascular system model.