中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/63016
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41642163      在线人数 : 1482
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/63016


    题名: 股票K線圖探勘: 從影像處理到相似度搜尋;Stock Chart Mining: From Image Processing to Similarity Search
    作者: 蔡志豐
    贡献者: 國立中央大學資訊管理學系
    关键词: 資訊科學;軟體;財政(含金融;保險)
    日期: 2013-12-01
    上传时间: 2014-03-17 14:16:50 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10208~10307;The investment activities have become an integral part of our lives. Because stock investment has higher profit and is easy to sell them for cash, stock price analysis has long been regarded as an important research topic. Technical Analysis, one of the major stock prediction methodology, includes quantitative analysis studies (QAS) and graphical analysis studies (GAS), in which QAS uses technical indicators to predict market trends and stock price and to decide the best time to buy/sell stocks. On the other hand, GAS can be subdivided into candlestick charts and pattern analysis. Much related work focuses on either improving the precision rate of stock price trends, or increasing the returns of investment. However, QAS contain various technical indicators and there is no an exact answer about how many and what technical indicators are more representative for stock prediction. In addition, it is difficult to allow the investors and analysts to grasp the underlying idea of technical indicators. Moreover, GAS has no formal definition and fair evaluation methods of candlestick chart patterns, thus the efficiency and reliability is difficult to trace. In order to improve above limitations, the aim of this research project is to propose a novel approach to bring the idea of image retrieval into candlestick charts analysis, and to verify whether candlestick charts are suitable for stock price analysis. This study is expected to achieve the following objectives: (1) To show that the image retrieval techniques are applicable for candlestick charts analysis. (2) To research and develop new images features to represent the visual content of candlestick charts. (3) To construct and compare general machine learning based classifiers using candlestick charts for stock prediction. (4) To draw up some useful investment strategies.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    显示于类别:[資訊管理學系] 研究計畫

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML448检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明