中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/63707
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41664228      在线人数 : 1650
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/63707


    题名: Legendre的定理在Z[i]和Z[w]的情形;Legendre's Theorem in Z[i] and in Z[w]
    作者: 施柏如;Shih,Po-Ju
    贡献者: 數學研究所
    关键词: Legendre's Theorem
    日期: 2004-01-16
    上传时间: 2014-05-08 15:26:30 (UTC+8)
    出版者: 國立中央大學
    摘要: none
    ;This thesis studies the Diophantine equation
    egin {eqnarray*}
    ax^{2}+by^{2}+cz^{2}=0,
    end {eqnarray*}
    which was investigated by Legendre when the coefficients are rational integers.
    Without loss of generality, we may assume that $a,b,c$ are nonzero integers, square free, and pairwise relatively prime.
    Legendre proved that the equation $ax^{2}+by^{2}+cz^{2}=0$ has a nontrivial integral solution if and only if
    egin{itemize}
    item[
    m (i)] $a, b, c$ are not of the same sign, and
    item[
    m(ii)] $-bc, -ac,$ and $-ab$ are quadratic residues of $a,b,$ and $c$ respectively.
    end{itemize}
    The purpose of this thesis is to extend Legendre's Theorem by carrying over the cases with
    the coefficients and unknowns in ${mathbb Z}[i]$ and in ${mathbb Z}[omega]$,
    where $i$ is a square root of $-1$ and $omega$ is a cubic root of unity.
    More precisely, we show that the necessary and sufficient conditions for the Diophantine equation $ax^{2}+by^{2}+cz^{2}=0$
    having a nontrivial solution over ${mathbb Z}[i]$ is that $bc, ca,ab$ are quadratic residues mod $a,b,c$ respectively,
    and the equation having a nontrivial solution over ${mathbb Z}[omega]$ is that $-bc, -ca, -ab$ are quadratic residues
    mod $a,b,c$ respectively.
    显示于类别:[數學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML347检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明