中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/63707
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41792911      線上人數 : 866
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/63707


    題名: Legendre的定理在Z[i]和Z[w]的情形;Legendre's Theorem in Z[i] and in Z[w]
    作者: 施柏如;Shih,Po-Ju
    貢獻者: 數學研究所
    關鍵詞: Legendre's Theorem
    日期: 2004-01-16
    上傳時間: 2014-05-08 15:26:30 (UTC+8)
    出版者: 國立中央大學
    摘要: none
    ;This thesis studies the Diophantine equation
    egin {eqnarray*}
    ax^{2}+by^{2}+cz^{2}=0,
    end {eqnarray*}
    which was investigated by Legendre when the coefficients are rational integers.
    Without loss of generality, we may assume that $a,b,c$ are nonzero integers, square free, and pairwise relatively prime.
    Legendre proved that the equation $ax^{2}+by^{2}+cz^{2}=0$ has a nontrivial integral solution if and only if
    egin{itemize}
    item[
    m (i)] $a, b, c$ are not of the same sign, and
    item[
    m(ii)] $-bc, -ac,$ and $-ab$ are quadratic residues of $a,b,$ and $c$ respectively.
    end{itemize}
    The purpose of this thesis is to extend Legendre's Theorem by carrying over the cases with
    the coefficients and unknowns in ${mathbb Z}[i]$ and in ${mathbb Z}[omega]$,
    where $i$ is a square root of $-1$ and $omega$ is a cubic root of unity.
    More precisely, we show that the necessary and sufficient conditions for the Diophantine equation $ax^{2}+by^{2}+cz^{2}=0$
    having a nontrivial solution over ${mathbb Z}[i]$ is that $bc, ca,ab$ are quadratic residues mod $a,b,c$ respectively,
    and the equation having a nontrivial solution over ${mathbb Z}[omega]$ is that $-bc, -ca, -ab$ are quadratic residues
    mod $a,b,c$ respectively.
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML347檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明