English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65275/65275 (100%)
Visitors : 20935208      Online Users : 265
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/64871


    Title: 一致化不同顆粒度所衍生企業流程之研究;Solving multi-level business process consistence issues based on Heuristic algorithm
    Authors: 傅嘉良;Fu,Chia-Liang
    Contributors: 工業管理研究所
    Keywords: 顆粒度;企業流程;流程探勘;啟發式演算法;價值鏈;生產力;grain;business processe;process mining;heuristics algorithm;value chain;productivity
    Date: 2014-07-17
    Issue Date: 2014-10-15 14:31:24 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 流程探勘技術被廣泛利用於企業流程管理,而目前許多研究指出利用流程探
    勘由事件日誌所推導出的企業流程以及企業預期的流程模型若兩者不一致,則有
    可能產生企業內部管理的缺失。由事件日誌推導企業流程的過程中,因為事件日
    誌有著不同的階層而產生不同的顆粒度,而本研究要解決的是從同一資料庫由於
    顆粒度不同所推導出的企業流程差異問題。
    另一方面以事件日誌推導企業流程一般利用活動間互動的頻率來決定企業
    流程的方向,但此方式容易忽略了次數少但是價值高的企業流程,導致啟發式演
    算法無法找出真實代表企業運作的企業流程,在本研究中提出一種新的方法取代
    一般的以次數推導企業流程,而是針對數量以及流程價值對事件日誌進行推導。
    本研究利用調整啟發式演算法中的直接相依係數來解決一致性差異的問題。
    使用啟發式演算法,並提出一種新的調整直接相依係數的方法,可有效的提升啟
    發式演算法的精確度以及求解速度。
    本研究利用石材加工業之事件日誌進行案例驗證,比較兩種不同顆粒度所推
    導出的企業流程,給定其中一個顆粒度的企業流程直接相依係數門檻值,利用啟
    發式演算法求解出相對應的直接相依係數門檻值,此方法可以解決在相同事件日
    誌的情況下因為不同顆粒度而產生的企業流程不一致,找出相對應一致的企業流
    程。

    ;Process mining technology has been widely used in business process management.
    At present many studies have indicated the use of process mining deduced from the
    event logs show that if the business process and business process models expected are
    inconsistent, it may be a risk of internal mismanagement.
    In the process of deduced business processes, the event log has a different levels
    result in different of grains. As the result, in this study we try to resolve the
    differences business process deduced from the different grain in the same database.

    On the other hand, business process derives from the event logs usually use the
    frequency of the activities interaction to determine the direction of the business
    processes. But this method ignores the few times and high-value business processes,
    the heuristic algorithms cannot identify the real business operations business process

    This study presents a new method to replace to derive business processes use the
    frequency, against quantity and processes value to derive business processes.

    In this study, we use the directly dependent coefficient of the adjusted heuristic
    algorithm to solve the problem of the difference consistency, and propose a new way
    to adjust directly dependent coefficients, which can effectively improve the accuracy
    and solving speed of the heuristic algorithm.

    In this study, we use the stone industry for case validation, comparing two business
    processes deduced from different grain, give one of the business processes a directly
    dependent coefficient threshold value, then use of heuristic algorithms for solving the iv

    corresponding direct dependent coefficient threshold value. This method can solve the
    inconsistent business processes from the different grain in the same database, and
    identify the corresponding consistent business processes.
    Appears in Collections:[工業管理研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML259View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明